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Remote Sensing

Multi-spectral remotely-sensed data such as satellite imagery
can yield excellent insights into complex phenomena such as
weather systems. Analysing the multi-channel space to sep-
arate out di�erent features still presents a challenge, which
will increase with the availability of hyper-spectral satellites.
We use component labelling and population thresholding tech-
niques to separate out clusters in hyper-dimensional channel
space and use this information to identify di�erent cloud types
in geostationary satellite imagery[1]. Three dimensionalvisu-
alisation techniques are used to study the hyper-dimensional
channel population data.

Figure 1: Full-disk Earth image obtained from
GMS5.

Figure 2: GMS-5 Data: Water Vapour Channel
(obtained at 30 June, 1996 2332GMT)

Assimilating data from multiple remotely-sensed sources[2] is
an important aspect of modern numerical weather prediction
codes[3]. Data come from a variety of sources but one that has
become dominant in recent years is the multi-spectral imagery
obtained from geostationery satellites. Weather prediction it-
self remains a challenging problem, not least due to the chaotic
and stability e�ects inherent in weather systems. Nevertheless
there has been considerable success in recent years in monitor-
ing weather systems, analysing cloud patterns[4] and tracking
features, which can then be incorporated as near live correc-
tions to weather simulation codes. Analysing cloud cover isan
important aspect of monitoring albedo e�ects and other phe-
nomena which feed into longer term climate change studies.

There have been good studies reported in the literature on
deriving cloud-cover patterns and statistics from varioussatel-
lite sources[5] including work using data from the now de-
funct, but previously very successful GMS5 Japanese weather
satellite[6]. Regularly sampled full-disk Earth image datafrom
GMS5 was made widely available during its lifetime and we use
some of that data collection[7] to explore some multi-spectral
channel space analysis techniques including cluster component
labelling, 3D visualisation and population thresholding to sep-
arate out clusters linked to image features.

Figure 1 shows a typical visible spectrum Earth full-disk im-
age obtained from the GMS5 satellite. GMS5 provided four
di�erent spectral channels but modern successors such as the
latest in the GOES series of satellites[8]already provide several
more, and new generation satellites promise even more. This
multi and hyper spectral data sources will require sophisticated
analysis techniques to yield maximal value from the combined
channel sources for land, sea, and atmospheric feature detec-
tion and statistical counting.

The work in this paper is based on multi-spectral imagery ob-
tained from the Japanese GMS5 geostationery satellite. Dur-
ing its lifetime this satellite was an excellent source of regularly
sampled full-disk Earth images of2291� 2291pixel resolution.
Other modern satellite sources such as the GOES series of
satellites also yield excellent multi-spectral data and would be
amenable to similar analyses as we describe in this paper. We
give a brief description of the characteristics of GMS5 dataas
indicative of the data features and handling issues.

The Geostationary Meteorological Satellite (GMS) typically
provided more than twenty-four full-disk hemisphere multi-
channel images per day. This required approximately
204MBytes of storage capacity per day, or 75GBytes per year.
Although this quantity of data was originally a challenge to
manage[9, 10] it is no longer perceived as a great deal as mod-
ern satellites produce several times this amount and storage
technology itself has advanced considerably since the satellite's
start-of-lifecycle.

See:http://www.massey.ac.nz/ � kahawick/cstn/071/
cstn-071.html for more information.

GMS5 Satellite Imagery

The GMS-5 satellite was launched in June 1995 and provided
visual and infra-red spectral data in various wavelength chan-
nels, measured using a Visible and Infra-Red Spin Scan Ra-
diometer (VISSR). The satellite operated from an altitude of
approximately 35,800km and a position almost directly over
the equator at 140 degrees east. The pixel resolution is ap-
proximately 4km and the four channel images are2291� 2291
pixels in size. The raw pixel data, sampled at hourly inter-
vals was made available at a NASAftp site in in Hierarchical
Data Format (HDF) [11] and was subsequently archived by the
DHPC research group at the University of Adelaide[12].

Figure 1 shows an image of the visible channel, which is quite
di�erent in character to the water vapour channel image in
Figure 2. Two of the infra-red channels were chosen to be close
to one another to allow for di�erential spectral analysis, but
the third infra-red channel was chosen to coincide with spectral
properties of water vapour and is therefore an excellent source
of study for cloud pattern analysis.

The Visible and Infra-Red Spin Scan Radiometer (VISSR)
recorded visible radiation through a photo-multiplier tube and
infra-red radiation through a HgCdTe detector, using a scan-
ning mirror system. Signals were quantized into 64 bits (visual)
and 256 bits (infra-red) prior to transmission to an earth based
receiving station. The satellite took approximately 27.5 min-
utes to record visual and IR data in a20x20degree area which
includes the Earth disk image with approximately 2500 mirror
scan steps. Imaging swathes are 4 km by 1 scan line for infra-
red and 1.25 km by 4 scan lines for visual data. The satellite is
spin-stabilized and scans are synchronised with the spin rate.
The observed schedule is full earth disk images hourly. Varia-
tions in the observation schedule occurred during periods when
the satellite was eclipsed, for periods of solar interference, for
typhoon special observation periods and for occasional satellite
maintainance periods.

A number of techniques were employed by the Adelaide re-
search group in managing the data storage system for pro-
cessing the data archive[13, 14]. Some tiling technologiesfor
carrying out these operations are described in [15] which builds
on earlier work on parallel data transforms [16]. These ideas
have been further developed and are described in[17]. Gener-
ally, over a decade later, the data can be readily stored on a
desktop workstation and a reasonable sequence of data can be
manipulated in memory. This makes the multi-spectral anal-
ysis and the cluster component labelling techniques we discus
below feasible in interactive time, whereas these techniques
would barely have been possible as overnight batch processing
runs on technology available around 1995.

Multiple Channels

Figure 3: Frequency (pixel) Histogram of VIS
vs IR3 for GMS5 0305090425 Dataset

A more interesting surface plot histogram arises from a com-
bination of the visible and water-vapour channels, as shownin
Figure 3. Some features we can identify simply. The narrow
crest at vis=0 corresponds to the dark portion of the image
that is space { outside the earth disk. Likewise, the crest at
maximal vis=41 corresponds to where albedo is maximal and
the visible sensor is saturated. Otherwise however, this isanon-
trivial surface showing a number of features that are not easily
separated by the eye. Cold, bright areas correspond to regions
of cloud, with high albedo, where warmer regions of varying
brightness correspond to di�erent sorts of land or vegetative
coverage.

One approach to visualising the multi-spectral data is to make
a surface plot frequency histogram of two of the channels.

Figure 4: Frequency (pixel) Histogram of IR1
vs IR2 for GMS5 0305090425 Dataset

Figure 4 shows a frequency histogram of the pixel values that
occur in the two di�erential IR1 and IR2 channels. These are
very close to one another and the surface plot of the histogram
shows they are very closely correlated. For our purposes we
focus on combinations of Visible, IR1 and IR3, since IR1 and
IR2 are so close.

Voxel Histograms

Figure 5: Rainbow log2-coloured Frequency
(pixel) Histogram Projection of Visible, IR1

and IR3 for GMS5 0305090425 Dataset.
Red-Green-Blue axes correspond to increasing

directions for Vis, IR1, IR3.

We can extend this surface histogram analysis to make use of
three out of the four channels available. Figure 5 shows the
visible, IR1 and IR3 channels combined in a 3D hyper-brick
where the colours correspond to di�erent histogram popula-
tion values. We have used a rainbow palette to try to make
the colour scheme intuitive. The histogram colour levels are
however on a logarithmic scale. So red voxels correspond to
rare combinations of the three channels that occur in the image
set, blue correspond to very common combinations.

As can be seen the multi-channel voxels form a complex shaped
clump. Once again not all combinations of the42� 160� 43 =
288; 960element space actually occur - and in fact less than
one third of the space is populated. However it is still very
di�cult to identify regions or features as they all appear to
interconnect into one super-clump of87; 105voxels.

Figure 6: Population Frequency of the Vis;
IR1;IR3 hyper-brick of channels. The insert

shows the same data on a log-log scale.

We can examine the frequency population of this 3D space
more carefully. Figure 6 shows the ranked occupation values.
It shows that there is a considerable (logarithmic) variation
between the most common combinations and the least likely
to occur. The limiting behaviour of the histogram is a straight
line when plotted on a log-log scale(shown in the insert.) This
suggests that at least in the high frequency limit, there is a
power-law scaling relationship[18] (a least-squares �tted expo-
nent of approximately0:7 � 0:1 is shown as the red straight
line.) This is not indicative of scale-free behaviour over the
whole range, but does indicate a surprisingly strong variation
between scales over part of the histogram range.

The departure from the straight line or power-law region sug-
gests that there might be di�erent clusters present in the data
that could be revealed by thresholding the data shown as a
super-clump in Figure 7. We therefore apply a population
threshold to the voxel values and identify and count the com-
ponent clusters that arise when we only include voxels with the
channel combination population of values above the threshold.

Figure 7: Frequency Threshold-clustered voxel
hyper-brick showing separable clusters in
channel space. Colours are assigned to
distinguish separate components. The

Red-Green-Blue axes shown correspond to
increasing directions for Vis, IR1, IR3.

Figure 7 shows how the super-clump separates into component
clusters when we apply a threshold of value 150. This value is
obviously entirely dependent on the GMS5 characteristics and
is obtained empirically. We can further analyse this idea by
examining the number of clusters and the size of the biggest
cluster that occurs when we vary the threshold.

Discussion

Figure 8: Arti�cially-coloured region around
Australia. Colours correspond to di�erent cloud

types, identi�ed by component clustering in
VIS-IR1-IR3 voxel-space

This analysis technique - which can be done on a modern
workstation in near interactive time, allows us to separateout
the component clusters of multi-channel-space voxels fromthe
super-clump. It allows us to identify features semi automati-
cally and use this information to arti�cially colour the pixels in
the original imagery according to their feature type. Figure8
shows the visible, water-vapour and an arti�cially coloured im-
age of the same spatial region over Australia. We have used
the component identi�cation technique to identify three dif-
ferent sorts of cloud cover, that would otherwise be hard to
separate out quantitatively in the original raw imagery. Our
technique generates actual voxel clusters of arbitrary complex-
ity and shape and speci�ed solely by the histogram thresholding
parameter.

A custom computer program in C++ using OpenGL[19] was
used to generate the 3D visualisation of the 3D voxel space. A
fast cluster component labelling and identi�cation program was
also developed[20]. A separate image visualisation program
was used to apply the arti�cial colouring to features in the
original imagery. It would be possible to combine these two
techniques into a single integrated program and also to extract
statistics on the area coverage for particular features.

In summary, we have used a fast component cluster identi�ca-
tion algorithm to identify separate clusters in the 3D channel
voxel space. The component labelling technique can be used
on the voxel data so-generated but it reveals a connected super-
clump of voxels that is not otherwise easy to separate visually.
The thresholding appears to give good visual cues to a human
operator trying to identify clusters in the data. This technique
works particularly well if done semi-interactively. The operator
tries a range of threshold values - chosen near the knee of the
cluster count curve and can see where the dominant clusters
appear and persist. This information, combined with a suit-
able knowledge of meteorological parameters of di�erent cloud
types - or other specialist knowledge of other feature parame-
ters such as vegetative land cover properties[21], would assist
a data analyst set up an automatic feature detection �lter.

We believe this technique has some promise in identifying fea-
tures in present generation multi-spectral satellite databut {
with judicious choice of which dominant three channels to fo-
cus upon { also for new generation hyper-spectral data sources.
An area of possible further work would make use of multi-
ple temporal images and super resolution techniques combined
with multi-spectral analysis[22, 23]. Finally, we have onlyused
unregistered pixel imagery. Greater value can be extracted
from the time-sequence of images if they can be registered to
coincide spatially.

References

[1] K. Hawick, \Clusters in hyper-cubic multi-channel satellite imagery," Tech.Rep. CSTN-071, Massey
University, September 2010.

[2] T. Lillesand and R. Kiefer,Remote sensing and image interpretation. John Wiley and Sons, Inc.,
3rd ed., 1994. ISBN 0-471-30575-8.

[3] K. A. Hawick, R. S. Bell, A. Dickinson, P. D. Surry, and B. J. N. Wylie, \Parallelisation of the
uni�ed model data assimilation scheme," inProc. Fifth ECMWF Workshop on Use of Parallel
Processors in Meteorology, (Reading), European Centre for Medium Range Weather Forecasting
(ECMWF), November 1992.

[4] Q. Xiao, X. Zou, M. Pndeca, M. Shapiro, and C. Velden, \Impact of gms-5 and goes-9 satellite-
derived winds on the prediction of a norpex extratropical cyclone,"Monthly Weather Review,
vol. 130, pp. 507{528, March 2002.

[5] M. Nordeen, D. Doelling, M. Khaiyer, A. Rapp, P. Minnis, and L. Nguyen, \Gms-5 satellite-derived
cloud propertiproperties over the tropical western paci�c," inProc. Eleventh ARM Science Team
Meeting, (Atlanta, Georgia), pp. 1{8, March 2001.

[6] Japanese Meteorological Satellite Center, \The GMS user's guide," 3-235 Nakakiyoto, Kiyose,
Tokyo 204, Japan, 1989.

[7] K. Hawick, H. James, K. J. Maciunas, F. Vaughan, A. Wendelborn, M.Buchhorn, M. Rezny,
S. Tayior, and M. Wilson, \Geostationary-satellite imagery applications on distributed, high-
performance computing," inProc. of High Performance Computing (HPC) Asia '97, pp. 50{55,
IEEE, 1997.

[8] M. A. Lombardi and D. W. Hanson, \The goes time code service, 19742004: A retrospective,"J.
Res. Nat. Inst. Standards and Tech., vol. 110, pp. 79{96, March-April 2005.

[9] H. James and K. Hawick, \Eric: A user and applications interface to a distributed satellite data
repository," Tech. Rep. DHPC-008, Computer Science, The University of Adelaide, South Australia,
April 1997.

[10] K. Hawick and H. James, \Distributed high-performance computation for remote sensing," inProc.
Supercomputing '97, no. ISBN :0-89791-985-8, (San Jose, California, USA), pp. 1{13, ACM/IEEE,
November 1997.

[11] National Center for Supercomputing Applications, \Getting started with HDF - user manual,"
University of Illinois at Urbana-Champaign, May 1993.

[12] K. Hawick and P. Coddington, \Interfacing to distributed active data archives,"Journal of Future
Generation Computer Systems, vol. 16, pp. 73{89, 1999.

[13] K. A. Hawick, P. D. Coddington, and H. A. James, \Distributed frameworks and parallel algorithms
for processing large-scale geographic data,"Parallel Computation, vol. 10, p. 1297, 2003.

[14] K. Kerry and K. Hawick, \Kriging interpolation on high-performance computers," in Proc. High-
Performance Computing and Networking (HPCN'98), vol. 1401/1998 ofLNCS, (Amsterdam),
pp. 429{438, Springer, 1998.

[15] O. Bosman, P. Fletcher, and K. Tsui, \K-tiling: A structure to support regular ordering and mapping
of image data," inAPRS Workshop on Two and Three Dimensional Spatial Data: Representation
and Standards, (Perth, Western Australia), 7-8 December 1992.

[16] P. Flanders and S. Reddaway, \Parallel Data Transforms," DAP Series, Active Memory Technology,
1988.

[17] K. A. Hawick and D. P. Playne, \Hypercubic Storage Layout and Transforms in Arbitrary Dimen-
sions using GPUs and CUDA," Tech. Rep. CSTN-096, Computer Science, Massey University, 2010.
Accepted for and to appear in Concurrency and Computation: Practice and Experience.

[18] A.-L. Barabasi and R. Albert, \Emergence of scaling in random networks," Science, vol. 286,
pp. 509{512, October 1999.

[19] K. Hawick, \3-d projection and simulation model visualisation," Tech.Rep. CSTN-082, Computer
Science, Massey University, April 2009.

[20] K. A. Hawick, A. Leist, and D. P. Playne, \Parallel Graph Component Labelling with GPUs and
CUDA," Parallel Computing, vol. 36, pp. 655{678, 2010. CSTN-089.

[21] R. Chinchuluun, W. S. Lee, J. Bhorania, and P. M. Pardalos,Advances in Modeling Agriculture
Systems, ch. Clustering and Classi�cation Algorithms in Food and Agricultural Applications: A
Survey, pp. 1{22. Springer, 2009.

[22] A. Gilman, D. G. Bailey, and S. R. Marsland, \Interpolation models for image super-resolution,"
in 4th IEEE Int. Symp. on Electronic Design, Test and Applications, no. 0-7695-3110-5/08, (Hong
Kong), pp. 55{60, IEEE Computer Society, January 2008.

[23] F. Li, X. Jia, and D. Fraser, \Superresolution reconstruction of multispectral data for improved
image classi�cation,"IEEE Geoscience and Remore Sensing Letters, vol. 6, pp. 689{693, 2009.


