Clusters In Hyper-Cubic Multi-Channel Satellite Imagery
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memo e Sensing

Multi-spectral remotely-sensed data such as satellgeryma
can yield excellent insights into complex phenomena sudh as
weather systems. Analysing the multi-channel space to gep-
arate out di erent features still presents a challengehw

will increase with the availability of hyper-spectrdliteste

We use component labelling and population thresholding tgc
niqgues to separate out clusters in hyper-dimensionaélchahn
space and use this information to identify di erent clquesksty

In geostationary satellite imagery[1]. Three dimensisnal
alisation techniques are used to study the hyper-dinaénsipn
channel population data.

Figure 1: Full-disk Earth image obtained from
GMS5.

Figure 2. GMS-5 Data: Water Vapour Channel
(obtained at 30 June, 1996 2332GMT)

Assimilating data from multiple remotely-sensed s@linses|

an important aspect of modern numerical weather predicfion
codes[3]. Data come from a variety of sources but one thatjhas
become dominant in recent years is the multi-spectrafymage
obtained from geostationery satellites. Weather poedit:ti

self remains a challenging problem, not least due to thie chac
and stability e ects inherent in weather systems. Nelemthe
there has been considerable success in recent yearson manit
Ing weather systems, analysing cloud patterns[4] anddrac
features, which can then be incorporated as near live coffec
tions to weather simulation codes. Analysing cloud cawer i
Important aspect of monitoring albedo e ects and other plje-
nomena which feed into longer term climate change studigs.

There have been good studies reported in the literaturegon
deriving cloud-cover patterns and statistics from vaatels

lite sources[5] including work using data from the now @e-
funct, but previously very successful GMS5 Japanesa wegthe
satellite[6]. Regularly sampled full-disk Earth imagérdata
GMS5 was made widely available during its lifetime and wdjuse
some of that data collection[7] to explore some multirkghec
channel space analysis techniques including clustenenmp
labelling, 3D visualisation and population threshotulsept

arate out clusters linked to image features.

Figure 1 shows a typical visible spectrum Earth full-disk §im-
age obtained from the GMS5 satellite. GMS5 provided fpur
di erent spectral channels but modern successors sueh ag th
latest in the GOES series of satellites[8]already proxada se
more, and new generation satellites promise even more. flhis
multi and hyper spectral data sources will require sttt
analysis techniques to yield maximal value from the cdmbjhe
channel sources for land, sea, and atmospheric featare dgte
tion and statistical counting.

The work in this paper is based on multi-spectral imagery jpb-
tained from the Japanese GMS5 geostationery satellite. Bur
Ing its lifetime this satellite was an excellent sourcgubdnlg
sampled full-disk Earth image22®1 2291pixel resolution.

Other modern satellite sources such as the GOES seri@s of
satellites also yield excellent multi-spectral data and b®
amenable to similar analyses as we describe Iin this papef We
give a brief description of the characteristics of GMSaglat:
Indicative of the data features and handling issues.

The Geostationary Meteorological Satellite (GMS) typical
provided more than twenty-four full-disk hemisphere- muiti
channel images per day. This required approximalely
204MBytes of storage capacity per day, or 75GBytes per \ear.
Although this quantity of data was originally a challengejto
manage[9, 10] it is no longer perceived as a great deal as ghod-
ern satellites produce several times this amount andestofiag
technology itself has advanced considerably since llite'sate
start-of-lifecycle.

()

See:http://www.massey.ac.nz/  kahawick/cstn/071/
cstn-071.html for more information.

| GMS5 Satellite |magery I

The GMS-5 satellite was launched in June 1995 and provided
visual and infra-red spectral data in various wavelergth c
nels, measured using a Visible and Infra-Red Spin Scarll Ra-
diometer (VISSR). The satellite operated from an altifudefjo
approximately 35,800km and a position almost directly dver
the equator at 140 degrees east. The pixel resolution isfap-
proximately 4km and the four channel imagez2&®t 2291

pixels in size. The raw pixel data, sampled at hourly inger-
vals was made available at a NABASsite in in Hierarchical
Data Format (HDF) [11] and was subsequently archived byjihe
DHPC research group at the University of Adelaide[12].

Figure 1 shows an image of the visible channel, which is quite
di erent in character to the water vapour channel imagefin
Figure 2. Two of the infra-red channels were chosen to be @lose
to one another to allow for di erential spectral analysts, [

the third infra-red channel was chosen to coincide withaspe
properties of water vapour and is therefore an exceller# sa

of study for cloud pattern analysis.

The Visible and Infra-Red Spin Scan Radiometer (VIS$R)
recorded visible radiation through a photo-multiplierand
infra-red radiation through a HgCdTe detector, using a scan
ning mirror system. Signals were quantized into 64 hits)vis
and 256 bits (infra-red) prior to transmission to an eastdba
receiving station. The satellite took approximately 2n:5

utes to record visual and IR data R0a20degree area which
iIncludes the Earth disk image with approximately 2500 mifgror
scan steps. Imaging swathes are 4 km by 1 scan line for igfra-
red and 1.25 km by 4 scan lines for visual data. The satellife |
spin-stabilized and scans are synchronised with thetspin ja
The observed schedule is full earth disk images houdy. Vari
tions in the observation schedule occurred during pdnsrs

the satellite was eclipsed, for periods of solar intedefen
typhoon special observation periods and for occasiehiaé sat
maintainance periods.

A number of techniques were employed by the Adelaidd] re-
search group in managing the data storage system for pro-
cessing the data archive[13, 14]. Some tiling techndtrgie
carrying out these operations are described in [15] witdish b

on earlier work on parallel data transforms [16]. These idka
have been further developed and are described in[17}. Ggner
ally, over a decade later, the data can be readily stored @n a
desktop workstation and a reasonable sequence of data cdn be
manipulated in memory. This makes the multi-spectral aflal-
ysis and the cluster component labelling techniques uge dc
below feasible in interactive time, whereas these teshnigu
would barely have been possible as overnight batch pgocessi
runs on technology available around 1995.
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Figure 3: Frequency (pixel) Histogram of VIS
vs IR3 for GMS5 0305090425 Dataset

A more interesting surface plot histogram arises from a c@m-
bination of the visible and water-vapour channels, asigho
Figure 3. Some features we can identify simply. The narfow
crest at vis=0 corresponds to the dark portion of the image
that is space { outside the earth disk. Likewise, the cresfjat
maximal vis=41 corresponds to where albedo is maximalfand
the visible sensor is saturated. Otherwise howeveratiug4s
trivial surface showing a number of features that are gt eds
separated by the eye. Cold, bright areas correspond g regio
of cloud, with high albedo, where warmer regions of var@ing
brightness correspond to di erent sorts of land or vegeta
coverage.

One approach to visualising the multi-spectral data ik mg
a surface plot frequency histogram of two of the channels
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Figure 4: Frequency (pixel) Histogram of IR1
vs IR2 for GMS5 0305090425 Dataset

Figure 4 shows a frequency histogram of the pixel values ghat
occur in the two di erential IR1 and IR2 channels. These @re
very close to one another and the surface plot of the histoglia
shows they are very closely correlated. For our purpose$ we
focus on combinations of Visible, IR1 and IR3, since IR1 jand
IR2 are so close.
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Figure 5: Rainbow log2-coloured Frequency
(pixel) Histogram Projection of Visible, IR1
and IR3 for GMS5 0305090425 Dataset.
Red-Green-Blue axes correspond to increasing
directions for Vis, IR1, IR3.

We can extend this surface histogram analysis to make uge of
three out of the four channels available. Figure 5 showsfthe
visible, IR1 and IR3 channels combined in a 3D hyper-lrick
where the colours correspond to di erent histogram populla-
tion values. We have used a rainbow palette to try to mdke
the colour scheme intuitive. The histogram colour leeels far
however on a logarithmic scale. So red voxels corresponid to
rare combinations of the three channels that occur in tge i
set, blue correspond to very common combinations.

As can be seen the multi-channel voxels form a complex shaped
clump. Once again not all combinations ofthel60 43 =

288 960element space actually occur - and in fact less than
one third of the space is populated. However it is still very
di cult to identify regions or features as they all appear ©
Interconnect into one super-clum@o6fLO5voxels.
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Figure 6: Population Frequency of the Vis;
IR1;IR3 hyper-brick of channels. The insert
shows the same data on a log-log scale.

We can examine the frequency population of this 3D space
more carefully. Figure 6 shows the ranked occupation vallies.
It shows that there is a considerable (logarithmic) wariat
between the most common combinations and the least ligely
to occur. The limiting behaviour of the histogram is alstraig
line when plotted on a log-log scale(shown in the inseid.)
suggests that at least in the high frequency limit, there i§ a
power-law scaling relationship[18] (a least-squard ®xfmo-

nent of approximately7 0O:1is shown as the red straight
line.) This is not indicative of scale-free behaviour lower
whole range, but does indicate a surprisingly strongovaria
between scales over part of the histogram range.

The departure from the straight line or power-law regien sfig
gests that there might be di erent clusters present in tie d:
that could be revealed by thresholding the data shown ds a
super-clump in Figure 7. We therefore apply a populafion
threshold to the voxel values and identify and count the c@m-
ponent clusters that arise when we only include voxelsavithjt
channel combination population of values above the tdreshio

Figure 7. Frequency Threshold-clustered voxel
hyper-brick showing separable clusters in
channel space. Colours are assigned to
distinguish separate components. The
Red-Green-Blue axes shown correspond to
Increasing directions for Vis, IR1, IR3.

Figure 7 shows how the super-clump separates into compdhent
clusters when we apply a threshold of value 150. This valdle is
obviously entirely dependent on the GMS5 charactensticsfie

IS obtained empirically. We can further analyse this ided by

examining the number of clusters and the size of the biggest

cluster that occurs when we vary the threshold.

\\“vi’lll’

Massey
V. University —

DJISCUSSION

Figure 8: Arti cially-coloured region around
Australia. Colours correspond to di erent cloud
types, identi ed by component clustering in
VIS-IR1-IR3 voxel-space

This analysis technique - which can be done on a modern
workstation in near interactive time, allows us to separate

the component clusters of multi-channel-space voxetadro
super-clump. It allows us to identify features semi automgt
cally and use this information to arti cially colour thelpix

the original imagery according to their feature type. Ragur
shows the visible, water-vapour and an arti cially cdloure

age of the same spatial region over Australia. We have #sed
the component identi cation technique to identify three d
ferent sorts of cloud cover, that would otherwise be hardito
separate out quantitatively in the original raw imagery. Qu
technique generates actual voxel clusters of arbitrgolegem

ity and shape and speci ed solely by the histogram thraghol
parameter.

A custom computer program in C++ using OpenGL[19] wWas
used to generate the 3D visualisation of the 3D voxel spacg. A
fast cluster component labelling and identi cation progas

also developed[20]. A separate image visualisatiomprogra
was used to apply the arti cial colouring to features in tije
original imagery. It would be possible to combine these jwo
techniques into a single integrated program and alsoaotext
statistics on the area coverage for particular features.

In summary, we have used a fast component cluster identifica-
tion algorithm to identify separate clusters in the 3D ehan
voxel space. The component labelling technique can be fised
on the voxel data so-generated but it reveals a conneaed slip
clump of voxels that is not otherwise easy to separatéyyvisual
The thresholding appears to give good visual cues to a hunan
operator trying to identify clusters in the data. This tqakn
works particularly well if done semi-interactively. Téraimp

tries a range of threshold values - chosen near the knee di the
cluster count curve and can see where the dominant clugters
appear and persist. This information, combined with a sit-
able knowledge of meteorological parameters of di evadt cl
types - or other specialist knowledge of other featureegpare

ters such as vegetative land cover properties[21], wastd &

a data analyst set up an automatic feature detection lter.

We believe this technique has some promise in identdyinggfe
tures in present generation multi-spectral satellitebdata

with judicious choice of which dominant three channels tofifo
cus upon { also for new generation hyper-spectral datassou

An area of possible further work would make use of multi-
ple temporal images and super resolution techniquesesbmiin
with multi-spectral analysis[22, 23]. Finally, we havasady
unregistered pixel imagery. Greater value can be extragted
from the time-sequence of images if they can be registergl to
coincide spatially.
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