
PERFORMANCE AND QUALITY OF RANDOM NUMBER GENERATORS
V. du Preez, M.G.B. Johnson, A. Leist and K. A. Hawick

dupreezvictor@gmail.com, f mitchelljohnsonnz, a.leist, k.a.hawick g@massey.ac.nz
Complex Systems & Simulations Group, Institute of Information and Mathematical Sciences, Massey University, Albany

http://complexity.massey.ac.nz

Introduction

The fast generation of good quality random numbers [1] is a
long-standing challenge [2,3]. Random numbers are needed
for many applications, but are used in very large quantities
in computer simulations that employ the Monte-Carlo algo-
rithm [4–6]. It is neither trivial nor computationally cheap to
generate large sets of pseudo-random numbers that have the
right statistical “randomness” needed to perform an unbiased
calculation.

Until recently it has not been practical to use random number
generation hardware that was economically priced and suit-
ably unbiased. Instead, pseudo random numbers that were
generated from a suitable deterministic algorithm were em-
ployed. A great deal has been written in the literature about
such algorithms, but for the most part there are many very
good ones that are “random enough” and are at least uncor-
related with the application so that they suf�ce.

One important area of use has been the numerical investi-
gation of phase transitions and critical phenomena. In such
work the Monte Carlo algorithm is used to sample appropri-
ate points in a physical model space to simulate the actual
dynamical behaviour of a model and identify the location of
critical points – abrupt changes - that result when a model
parameter such as temperature changes by a small amount.

This work is very computationally demanding and a certain
degree of caution is perceived in the reported literature as
researchers go to great lengths to be sure their simulations
are not overly biased by random numbers with unfortunate
statistical properties.
We describe work to test and use random numbers generated
by a Quantum device [7] as shown below.

FIGURE 1: Quantis RNG Card for PCI Bus, showing
four independent quantum generator devices.

Implementation & Timing

Common methodologies utilise computer CPUs to produce
pseudo-random numbers using bitwise operations and
mathematical operations to suitably randomise a number.
The Mersenne-Twistor [8] is a common generator algorithm
to produce high quality numbers, whereas the linear congru-
ential algorithm, which is used in Unix rand, is a common
and well known low quality example. Producing truly random
numbers is impossible when using a algorithm running on a
computer, this is the realm of the hardware random number
generators (RNGs).

The algorithmic tradeoff space covers very high-quality gen-
erator algorithms such as the Mersenne-Twistor that are sig-
ni�cantly slower than those very-fast but lower-quality al go-
rithms such as linear congruential generators. In between
these extreme cases it is often possible to improve low-quality
generator algorithms by adding lag tables and shuf�e tables
to further randomise or decorrelate the sequences of random
deviates and indeed to combine several independent algorith-
mic sources together.

FIGURE 2: Description of the method for producing a
random bit in the Quantis device.

Quantum Generator

The quantum random number generator we assess in this pa-
per is the Quantis PCI quantum random number generator
produced by ID QUANTIQUE SA [9]. This generator uses a
photon emitter directed at a semi transparent mirror, which
lets the photons through with a theoretical probability of 50%.
Each generator allows for a constant stream of random bits
of up to 4 MBits/s. The PCI device contains 4 separate gen-
erators, bringing the theoretical maximum random stream to
16MBits/s or � 500deviates per millisecond.

The Quantis card supports both Windows and various
�avours of Linux. For our testing we used Ubuntu Linux with
the standard Quantis driver installation. The drivers API fa-
cility provides various methods for retrieving different data
types. The most low level of these is the QuantisRead
method:

i n t QuantisRead (QuantisDeviceType deviceType ,
unsigned i n t deviceNumber ,
void � bu f fe r , s i z e t s i ze) ;

This generates size bytes of random numbers into
the variable buffer , where size is constrained to
QUANTIS MAX READ SIZE . To get more than this we
must loop until the desired size has been reached. Alternately
we can use:

i n t Quant isReadInt (QuantisDeviceType deviceType ,
unsigned i n t deviceNumber ,
i n t � value) ;

To get a signed integer value from the device. This method
is much slower at reading multiple numbers than reading raw
bytes. To overcome this problem, we use QuantisRead in
a multi-threaded environment where one thread is caching
blocks of random bytes while the consumer thread uses them.
This method may still not be suf�cient for algorithms such as
the Monte Carlo, but will signi�cantly reduce the time over
using QuantisReadInt .

Performance & Quality

For most scienti�c purposes it is suf�cient to say that they
need to be suf�ciently uncorrelated that when used for a
Monte Carlo simulation or other application the deviate
quality does not lead to an observable bias [1]. Or put more
simply – that the random number generator does not lead the
applications programmer to the wrong answer. Various statis-
tical tests [10], both at a straightforward level [4], checking for
visual planar correlations [11] planes and other approaches
such as the spacing test, scatter-plots, that detect obvious
patterns or simple statistics are possible, as well as very
speci�c application related tests that are highly sensitive to
correlations.

To evaluate the raw performance of generators we test
four different popular pseudo-random number generators:
Mersenne Twister (MT), Ran described in the book Numerical
Recipes (Ran) [12], the standard Unix rand and Marsaglia's
lagged-Fibonacci Generator (LFG). These generators were
tested for randomness using the birthday spacings test found
in the diehard testing suite for random numbers, with the
values N = 232; M = 212 and � = 4. Supplementary tests
were also performed with the standard diehard test suite [2]
and these con�rm the below �ndings.

Algorithm Birthday Spacings
Pass/Fail

Ran X
LFG X
MT X

Quantis (to CPU) X
Unix Rand X

Table 1 shows that all except the Unix rand random numbers
pass the birthday spacings test. This is in line with common
knowledge about the periods of these generators [1].

Applications of speci�c random number generators are
dependent on the speed in which the numbers can be at-
tained by the client, where client refers to a central processing
¡unit, graphics processing unit, etc.

In random number intensive applications, such as the Monte
Carlo algorithms in Ising/ Potts models, computation time is
negligible compared to the fetch time for random numbers.
Whereas, in cryptography the computation time signi�cantly
outweighs the fetch time for the random numbers, which al-
lows slow generators to hide their speed by caching numbers
for fast use by other threads.

Discussion & Conclusion

Algorithm Performance Deviates
Per Millisecond

Ran 24085
LFG 13367
MT 22795

Quantis (Single Thread) 61
Quantis(Multi Thread) 111

CUDA(LFG) 1:28e107

Table 2 shows that the results for all of the CPU pseudoran-
dom number generators are comparable in speed, with the
Ran algorithm producing the most at 24085 deviates per mil-
lisecond. This is more than two orders of magnitude faster
than the single threaded Quantis generator at about 61 32-
bit deviates per millisecond. The lagged-Fibonacci generator
on the CUDA GPU is another 2-3 orders of magnitude faster
than the CPU algorithms.

Although these pseudo-random number generators pass
most common tests, this does not guarantee their true ran-
domness. Using physical phenomena, such as photon emit-
ters like the one used in this paper or Intel's on-chip tempera-
ture variation random source, allows us to guarantee that the
number is completely random and free from any bias.

Performance of the generators was as expected, with the
CUDA GPU LFG algorithm producing 1:28e107 random devi-
ates per millisecond. The single threaded Quantis card al-
gorithm produces only 61 32-bit deviates per millisecond and
111 deviates for the multi-threaded implementation. This is
much slower than the theoretical maximum of 500 32-bit de-
viates from the 16MBits/s stream of random bits. We attribute
this latency to the fetch time from the card over the PCI bus
and the conversion time to the specied data type. The speed-
up attained by introducing multiple threads is signi�cant as
this allows us to hide the time lost in the conversion process
and by fetching the maximum number of bytes at each API
call we minimise any latency that is associated in calling the
Quantis card via the PCI bus. For Monte Carlo algorithms
even the CPU pseudo random algorithms are the bottleneck
in the simulation, hence the Quantis card is much too slow for
these. A good compromise is to use the numbers produced
by the Quantis card to seed a good pseudo-random number
generator, thus ensuring that the seeds are statistically inde-
pendent.

In summary, the �eld of computer generated random number
algorithms is one of “horses for courses” - there is no single
best algorithm that will satisfy all requirements. Before start-
ing any project using Monte Carlo algorithms and for which
the quality of the random numbers matters, it is therefore of
great importance to carefully consider which algorithm to use.

References

[1] D. Knuth, The Art of Computer Programming: Seminumerical Algo-
rithms, vol. 2. Addison-Wesley, 3rd ed., 1997.

[2] G. Marsaglia, “Diehard battery of test of randomness.” http:
//www.stat.fsu.edu/pub/diehard/, 1995.

[3] K. Hawick, A. Leist, D. Playne, and M. Johnson, “Speed and Portabil-
ity issues for Random Number Generation on Graphical Processing
Units with CUDA and other Processing Accelerators,” in Proc. Aus-
tralasian Computer Science Conference (ACSC 2011), 2011.

[4] P. D. Coddington and S. H. Ko, “Techniques for empirical testing of
parallel random number generators,” in Proc. International Confer-
ence on Supercomputing (ICS'98, 1998. DHPC-025.

[5] K. A. Hawick and H. A. James, “Ising model scaling behaviour on
z-preserving small-world networks,” Tech. Rep. arXiv.org Condensed
Matter: cond-mat/0611763, Information and Mathematical Sciences,
Massey University, February 2006.

[6] A. Leist, D. Playne, and K. Hawick, “Interactive visualisation of spins
and clusters in regular and small-world Ising models with CUDA on
GPUs,” Journal of Computational Science, vol. 1, pp. 33–40, 2010.

[7] V. D. Preez, M.G.B.Johnson, A.Leist, and K.A.Hawick, “Performance
and quality of random number generators,” in International Confer-
ence on Foundations of Computer Science (FCS'11), no. FCS4818,
(Las vegas, USA), July 2011.

[8] M. Matsumoto and T. Nishimura, “Mersenne twistor: A 623-
diminsionally equidistributed uniform pseudorandom number genera-
tor,” ACM Transactions on Modeling and Computer Simulation, vol. 8
No 1., pp. 3–30, 1998.

[9] ID Quantique White Paper, “Random Number Generation Using
Quantum Physics,” Tech. Rep. Version 3.0, ID Quantique SA, Switzer-
land, April 2010. QUANTIS.

[10] S. Cuccaro, M. Mascagni, and D. Pryor, “Techniques for testing the
quality of parallel pseudo-random number generators,” in Proc. of
the 7th SIAM Conf. on Parallel Processing for Scienti�c Comput ing,,
(Philadelphia, USA), pp. 279–284, SIAM, 1995.

[11] G. Marsaglia, “Random numbers fall mainly in the planes,” Proc. Natl.
Acad. Sci., vol. 61, no. 1, pp. 25–28, 1968.

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes - The Art of Scienti�c Computing . Cambridge,
third ed., 2007. ISBN 978-0-521-88407-5.

