Computational Science Technical NoteCSTN-219

Procedural Generation of Terrain within Highly Customizable JavaScript
Graphics Utilities for WebGL

T. H. McMullen and K. A. Hawick
2013

Modelling realistic scenes and rendering them appropriately are two key aspects of modern computer games. Scenes
need to be detailed, realistically non-repetitive and computationally feasible. Procedural generation involves encoding
a game scene as a recipe or procedure that can be generated and regenerated at run time, rather than just loaded
from ble or network server. Procedural generation in the context of web games and systems is particularly powerful
in reducing bandwidth transfer requirements. We describe experiments to implement a framework for procedural
generation using JavaScript and modern web client software systems such as WebGL and OpenGL shader language.
Our system is able to exploit available Graphical Processing Units(GPU) and is aimed at supporting existing web
based graphics engines. We present some graphical results and discuss future performance and scalability issues.

Keywords: computer games; scene generation; procedural generation; spatial structure; fractals

BiBTeX reference:

QINPROCEEDINGS{CSTN-219,

author = {T. H. McMullen and K. A. Hawick},

title = {Procedural Generation of Terrain within Highly Customizable JavaScript
Graphics Utilities for WebGL},

booktitle = {Proc. 10th Int. Conf. on Modeling, Simulation and Visualization Methods
(MSV’13) 7},

year = {2013},

number = {CSTN-219%},

pages = {MSV7287},

address = {Las Vegas, USA},

month = {22-25 July},

organization = {WorldComp},

institution = {Computer Science, Massey University, Auckland, New Zealand},

keywords = {computer games; scene generation; procedural generation; spatial structure;
fractals},

owner = {kahawick},

timestamp = {2013.06.03%},

url = {http://www.massey.ac.nz/ kahawick/cstn/219/cstn-219.html}

This is a early preprint of a Technical Note that may have been published elsewhere. Please cite using the information
provided. Comments or quries to:

Prof Ken Hawick, Computer Science, Massey University, Albany, North Shore 102-904, Auckland, New Zealand.
Complete List available at: http://www.massey.ac.nz/~kahawick/cstn


http://www.massey.ac.nz/~kahawick/cstn
http://www.massey.ac.nz/~kahawick/cstn

Technical Report CSTN-219

Procedural Generation of Terrain within Highly Customizable
JavaScript Graphics Utilities for WebGL

T.H.McMullen and K.A. Hawick
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: timmy361 @ gmail.com k.a.hawick@massey.ac.nz
Tel: +64 9414 0800 Fax: +64 9 441 8181

June 2013

ABSTRACT

Modelling realistic scenes and rendering them appropriately
are two key aspects of modern computer games. Scenes
need to be detailed, realistically non-repetitive and compu-
tationally feasible. Procedural generation involves encoding
a game scene as a recipe or procedure that can be generated
and regenerated at run time, rather than just loaded from file
or network server. Procedural generation in the context of
web games and systems is particularly powerful in reducing
bandwidth transfer requirements. We describe experiments
to implement a framework for procedural generation using
JavaScript and modern web client software systems such as
WebGL and OpenGL shader language. Our system is able
to exploit available Graphical Processing Units(GPU) and
is aimed at supporting existing web based graphics engines.
We present some graphical results and discuss future perfor-
mance and scalability issues.

KEY WORDS
computer games; scene generation; procedural generation;
spatial structure; fractals.

1 Introduction

Computer games [20] make heavy use of scene modelling
[19], generation and rendering. While OpenGL [4, 6, 26]
software has become the de factoindustry standard for ren-
dering scene, a modern generation of network and mobile
games make use of web clients to run and render the sys-
tem. WebGL [1, 3, 16] is an excellent bridging technology,
because it allows many sophisticated scene and game ren-
dering tasks to work within a web client context and sup-
ports game interface design [24] in a platform independent
manner [18].

The advent of WebGL means that many web-based graph-

Figure 1: Terrain Generation: Landscape produced us-
ing the Diamond Square algorithm in WebGL. Map size is
257x257

ics utilities have been created to support simple graphical
functions. We aim to improve upon the current graphic en-
gines by allowing for a more customizable utility to be used,
with functionality focused on procedural generation [7, 10].
It is the aim of this research to maximise the use of proce-
dural generation to create different landscapes in different
levels of detail. Implementation plays a large role in these
tools, and so we use the Require.js module loader. With the
created library it is hoped that the resulting programs, and
applications will run on a range of devices. This means that
several optimizations need to be researched to achieve this.

Procedural generation is a method of using algorithms to



create content. Taking this approach to creating content al-
lows for unique areas, models and other objects to be pro-
duced. The idea behind this research is simplifying the pro-
cess of creating content by utilising procedural generation.
This means that if an object is created several times, they
will differ slightly each time they are rendered. Procedu-
ral generation fundamentally changes the way in which a
model is created. The model is generated at run time and
with unique customisations that are made possible, rather
than loaded from a static set of pre-generated options from
a server.

Procedural generation has been used for a variety of scene
aspects including village [5] or urban [25] architectural
components, interior architectures [9], and organic materials
such as trees [11, 13,21]. Terrain and organic materials the
generated patterns are often not simple geometric ones but
are fractal in nature. This requires a more complex approach
using fractal algorithms [15] such as L-Systems [23]. Var-
ious approaches to procedural generation software are pos-
sible, including the use of domain specific languages [8] to
support customization. Some work using procedural gener-
ation for mobile systems has been reported on [14] but little
work is available on its use in web based systems where data
compression and minimizing data transfer [17] is important.

WebGL is an implementation of OpenGL designed to be run
in the a web browser, using a JavaScript API [22]. It uses
OpenGL Shader Language (GLSL) [2] to create and com-
pile shaders to be run on a graphics processing unit(GPU)
[12], to allow for highly dynamic and customizable graphi-
cal programming to be completed. As WebGL is web based
it does come with some limitations. The limitations include
restrictions imposed by bandwidth restraints, and JavaScript
being interpreted code as opposed to compiled code. These
limitations can be improved upon by minimising the amount
of data which will need to be transferred, as well as improv-
ing the processing of data with the use of GLSL. The use
of shader language means an application is able to offload
some parts of the program to the GPU to be computed rather
than the CPU.

As this research aims to create a highly customizable set of
utilities, implementation needs to be as simplistic as possi-
ble. To help achieve this the Require.js script is used. This
allows a web based application to be spread across multiple
files, with each part accessible. By doing this, it helps to
greatly simplify the process of creating and including code,
into an web based environment.

This technology can be used to help improve upon some lim-
itations of web based graphic engines by allowing for large
landscapes to be generated, as opposed to being loaded as a
file. The file is then created locally rather than being trans-
ferred from a server, which saves on bandwidth. This does
create the need to generate the content rather than reading
in a file, the benefits of which are discussed later on in this

paper.

There are other implementations of procedural generation
used within many graphical system, however ours has fo-
cused on the use of platform independence. This means
that various limitations impact the design of the set of utili-
ties. One such limitation is the maximum number of vertices
which are able to be drawn in one draw call. This in turn cre-
ates the need to split up the scene and make multiple draw
calls for one frame if necessary. Additional limitations are
discussed throughout this paper.

Figure 1 shows a procedurally generated scene of a land-
scape, which was generated using the framework and util-
ities we report in this paper. The remainder of our article
is structured as follows: In Section 2 we discuss to use of
procedural generation, with a focus on the Diamond Square
algorithm. Section 3 covers results from this research, while
Section 4 talks about what we found, and problems were
encountered. The final section, talks about what we have
completed and where this research will lead to in the future.

2 Procedural Generation

Procedural generation of a landscape allows for a created en-
vironment to be based on a set of pseudo random numbers.
Creating content in this manner allows for a developer to
simply create unique or predefined content. The significant
advantage of generating content this way, is that it allows
for additional data to be assigned to each point. An example
of this would be what kind of terrain it is, or if you want to
have something else spawn at that location. The Diamond
Square method combined with our created utilities means
the Z value is the only one affected in our mesh, leaving the
original environment dimensions with a minimum amount
of change.

The Diamond Square implementation is a method of creat-
ing and changing the height value of a location in a square
map. This method works by taking two steps, the diamond
and square steps. For the Diamond step four points of a
square are use to find the center point, this point has its el-
evation changed, in our case the Y value. The change in
value is based on an offset from a random number, followed
by using the average of the original four corner points. The
square step involves taking the center point and using that
to allow for the subdivision of the main map area, each seg-
ment being a quarter of the original size. This process is
repeated till the map is unable to be divided anymore. Us-
ing the Diamond Square algorithm allows for a set of prede-
fined pseudo random numbers to be provided to recreate a
previously created environment.

Within the process of creating a procedurally generated ter-
rain we take in the information of an area surrounding a
point within the mesh, and based on that are able to define
certain aspects for that point. Creating additional properties



within a generated terrain like this allows for areas to have
more details applied to them, and to influence surrounding
areas. An example of this would be to have a tree spawn
if a set condition was met, then having that tree at that lo-
cation would increase the chances of the neighbouring tiles
also having a tree or some other previously specified object.

To create a mesh which is able to store these details nor-
mally we would need to use a 2D array. As JavaScript does
not currently have native support for 2D arrays this left two
options for storing the data. The first option was to use a
single array, and manipulate that to work as it would if it
was a 2D array. This is done by adding supplementary in-
formation to the index when searching for a data point, such
as line size, and height. The other option for creating a 2D
array was to create an array, then append another array to
each element within the original array. This latter method
did create some unique problems when trying to access an
element, but proved to be simpler in the conceptual stages
of this research.

The utility uses pseudo random numbers to allow for a cre-
ated scene to be reproduced. Pseudo random numbers, as the
name suggests are random numbers which are not truly ran-
dom. While the process of generation allows for seemingly
random numbers to be produced, they are all based upon the
originally selected numbers (seeds). Using this method al-
lows for a scene which has been produced to be recreated
by reusing the same base numbers. These utilities allow for
the passing of predefined seeds, but if none are passed then
a seed based on time is produced.

Additionally as these utilities aim at being platform inde-
pendent the GPU on the device is able to help improve per-
formance in several key ways. Firstly we are able to have
the GPU colour parts of the environment based on height
and location information which is passed in as the x, y, and
z coordinates of a point. Using the GPU to do these calcu-
lations reduces the quantity of data that needs to be passed
from the CPU to the GPU at any given time, as well as free-
ing up the CPU for other calculations. Another advantage of
using the GLSL with the GPU is that the utilities designed
allow for data which has been processed on the GPU to then
be returned and worked on again. This in turn allows for a
cyclic flow of information.

Algorithm 1 Diamond Square Algorithm, Square Step.
declarex, y, size, half, offset, avg , vertices[]
half = size/2
pointl = vertexes[x - half][y - half]
point2 = vertexes[x + half][y - half]
point3 = vertexes[x - half][y + half]
point4 = vertexes[x + half][y + half]
avg = (pointl + point2 + point3 + point4)/4
vertices[x][y] = avg + offset

Algorithm 1 shows the Square step in the Diamond Square
algorithm, which is taking the four surrounding corners of
a point, and their corresponding value to find an average
value. Then an offset is added to find average, and it is ap-
plied to our central point.

Algorithm 2 Diamond Square Algorithm, Diamond Step.
declarex, y, size, half, offset, avg , vertices|]
half = size/2
pointl = vertexes[x - half][y]
point2 = vertexes[x + half][y]
point3 = vertexes[x][y + half]
point4 = vertexes[x][y + half]
avg = (pointl + point2 + point3 + point4)/4
vertices[x][y] = avg + offset

Algorithm 1 shows the Diamond step in the Diamond
Square algorithm which is taking the top, bottom, left and
right points surrounding a central point, and their corre-
sponding values to find an average value. Then an offset is
added to find average, and it is applied to our central point.t.

The algorithms above are the key steps within this proce-
dural generation implementation. The overall system works
using a 2D array that is recursively subdividing itself by tak-
ing a point and initially using the Diamond step to assign a
value to the center point. The Square step used next involves
initialising the points above, below and to the left and right
of the center point. Once this is done, the area is split into
quarters, and the steps repeat, but now in a smaller section
using a reduced size value. This process will repeat until all
the points within the 2D array have become initialized.

Figure 2 shows the process of moving through a 2D mesh,
using the Diamond Square algorithm. We can see in the first
image the selection of the four corners, from this we move
on to initialize the center point shown in tile to the right - this
part was the Diamond step. Next we apply the Square step
to the mesh, filling in the data for the center of each edge.
Once we have completed both steps the area which we work
in is reduced, and then the steps are repeated. The last part of
figure 2 shows the final step; the Square step. Once applied,
the whole grid has been initialized with a value which can
then be used for the height of a location in the mesh.

3 Experimental Results

The system created is built up of several key parts; firstly the
implementation of the Diamond Square algorithm to build
the procedural generation for the utilities. This included
simplifying the process of creating a scene, by using created
functions. The optimization of code, and utilisation of GPUs
have played a role in improving the system in speed and in
bandwidth consumed. Finally the limitation of vertices able
to be rendered in one draw call needed to be addressed to



¢los
ole
olela

Figure 2: The Process of the Diamond Square Algorithm on
a 5x5 grid

allow for larger terrains. Each of these parts played a vital
role in creating this system, and will be expanded upon be-
low. A performance review is also included so as to see the
resulting improvements over other methods.

Implementing the Diamond Square algorithm required the
use of several steps as explained in figure 2. This research
aimed at producing a simplified method of implementing
these, along with allowing for customisation of additional
data points. This was achieved by creating several func-
tions which would set up the scene, and create the terrain.
The produced environments can be based on various map
sizes, and heights, along with various colors or textures if
required. This resulted in allowing for a scene to be set up
and rendered using fewer lines of code, as well as allowing
for more complex environments to be produced if required.

For optimizing the algorithms and effects applied much of
the work was passed to the GPU of the device. When a scene
is created, based on the required setup, the GPU will use dif-
ferent shader code, producing different effects. The simplest
and greatest improvement was achieved by having the col-

oring of an environment based on the X, y and z coordinates
of the vertex. The result of this style of processing helped
to minimise the data which needed to be passed between the
CPU and GPU, along with reducing the work carried out
on the CPU. By comparison, other implementations require
that additional texture information be passed to the GPU,
including imaging and coordinate data. These techniques,
though they can lead to some visually creative effects, do
not fit well with the idea of procedural generation.

With WebGL we are limited by the number of vertices that
are able to be drawn in a single GL.DrawElements function,
some steps are needed to overcome this. The limitation oc-
curs due to the indices using 16 bit for each data point, caus-
ing wrap around and other ill effects when trying to render
over the limit of 65000 points. To work around this requires
the use of multiple draw calls, based on multiple index ar-
rays. This method splits up meshes which are over this limit
into several smaller ones, and creates relating indices for
each, along with using a repetitive draw function which will
loop through each draw call and thus mesh.

The performance of this research plays a large role. To
check this, an obj file was produced using the Diamond
Square algorithm. For a mesh the size of 256 x 256, a file
of 3.5 mb was produced. This would take several minutes to
load in the file and set up the arrays in order to be rendered.
Comparatively, a landscape created in JavaScript using the
same algorithm was able to be loaded and set up within a
matter of milliseconds. This is because when loading in
the file it would need to be read, and parsed from a string
to float. As seen in figure 3, it can be seen that a mesh of
256x256 would only take 34.8 ms to generate and load. This
shows that a landscape which is generated is able to have a
much larger scope, due to improved performance. Another
upside of this method is that it saves in bandwidth as a large
file does not need to be passed as only a small set of numbers
are used to produce the area.

With these results it is clear to see the improvements made to
generating terrain with WebGL for three reasons. Firstly, the
speed in which a scene can be set up and rendered has been
improved upon. Secondly, the limitations in the maximum
numbers of vertices able to be rendered in one draw call have
been worked around. Finally, we include optimizing the use
of the GPU within this area of study.

Figure 3 Shows the time taken for meshes of various sizes
to be rendered. A mesh of 16 x 16 takes on average 1.5
milliseconds, while one of 64 x 64 takes 7.1 milliseconds.
A larger area such as 256 will still only take part of a second
to create, with a timing of 34.7 milliseconds to generate the
terrain.



40 W 16x16
Mesh

M 64x64
Mesh

W 12Exi28
Mesh

W 256x256
Mesh

]

20

Time to Generate Environment (ms)

Mesh Size

Figure 3: Terran Generation 64x64 Time taken to gener-
ate environments in various sizes

4 Discussion

This research has resulted in various improvements in gen-
erating unique scenes in web based applications using We-
bGL. These include; the improved performance of produc-
ing unique terrain within a WebGL application, the ability
to reuse these improvements by using a created set of util-
ities in future areas of research, scaling an area based on a
the performance of a device, and the required level of detail
has being addressed, along with created applications being
support across a range of devices. Various landscapes have
being produced, and have created challenges rendering.

The ability to create dynamic and various environments sim-
ply by using different random numbers allows for a larger
and more immersive scene. This has been achieved through
the use of the Diamond Square algorithm, as seen in figures
4, 5 and 6. Figure 4 displays a smaller mesh which is 16 x
16, this was generated in 1.5 milliseconds, but evidently it is
very jagged as it has a low polygon count. In Figure 5 it is
clear that by increasing the size the mesh produces a more
fluid landscape, and this can be seen improving across all
the meshes produced, such as in figure 6 and figure 1. This
allows for a more unique terrain to be created with WebGL.

As research is able to be integrated into other projects, it is
necessary to allow for it to be built upon and customised.
One feature is that each data point of the mesh can have ad-
ditional associated values assigned to it. This allows for a
graphic engine to know when and how to produce another
object within a scene. To produce a project using these util-
ities helps remove the need to manually set up a WebGL en-
vironment as this has been replaced with smaller functions
to work with the other functions within the utility.

As a range of devices are able to run applications based on
this research it is necessary to allow for the environment
to be generated based on the device. The range in sup-
port hardware lead to the need to scale an area based on
the processing power available. Conventional PCs and lap-
tops ran the application smoothly across all ranges tested,
but the larger terrains were slower to render on tablets and
smart-phones, due to the limitations within the GPU. With
the rendering side being affected it is necessary to, in this

Figure 4: Terrain Generation 16x16 Landscape produced
using the Diamond Square algorithm in WebGL. Map size
is 16x16, this does correctly create a environment, but the
edges are sharp, and could easily be improved on.

case, optimise the application to maximise the use of the
CPU rather than the GPU. The process of creating the en-
vironment was slightly slower, but did not affect the per-
formance of the application as greatly as the rendering. To
overcome this we used smaller meshes with a smaller height
limitation. This meant larger areas needed to be covered by
each produced triangle, but with a smaller rise, which pro-
duced a smoother effect, and allowed for lower end devices
to run with noticeably improved performance.

With many of the produced landscapes exceeding the limita-
tions of a single draw call within WebGL, this issue needed
to be addressed. The cause was found to be the use of a
16 bit short to store the indices. This is intended to allow
for applications to be cross platform, and work on a range
of hardware. To overcome this, when necessary, once the
mesh is created it will be split up, and each part draw in a
different draw call. This is completed by creating a class
which stores the numbers of meshes, along with each mesh
within it. When the draw cycle begins, it is looped through
using a different set of indices each time, for each mesh.

5 Conclusions

This research has produced a set of utilities to improve upon
the limitations of WebGL and platform independent based
graphics. The use of procedural generation enables the pro-
cess of creating unique environments. Optimizations were
made to maximise the use of the GPU, along with minimis-



Figure 5: Terrain Generation 64x64 Landscape produced
using the Diamond Square algorithm in WebGL. Map size is
64x64, here we see that the edges have become smaller, and
smoother, helping to create more realistic environments.

Figure 6: Terrain Generation 128x128 Landscape pro-
duced using the Diamond Square algorithm in WebGL. Map
size is 128x128, another improvement in creating a realistic
scene within WebGL with noticeably fewer sharp edges, and
a greater range in terrain created.

ing bandwidth. The speed at which an environment is cre-
ated has greatly increased, as the scene can be created with-

out the need to load in a new file. The ability to run applica-
tions using this is also taken into consideration with the use
of various techniques to create a smooth environment for the
user.

While undertaking this research various problems were
found with the current methods of achieving much of our
aim. These issues were comprised of the limit in elements
able to be drawn at a single time, the size of a created
mesh when loaded from a file, and the methods used to help
smooth jagged edges.

In future this set of utilities will be added to, improving the
creation of procedurally generated environments, with the
addition of trees and water flow. It is hoped that with addi-
tional features such as these, creating a fully interactive and
high quality environment will become simple and effective.
We hope that once these future goals are complete, the use
of procedural generation will make a substantial effect on
how 3D applications are created and used in the Web.

In summary, procedural generation implemented with
JavaScript has been shown to achieve significant reduction
in bandwidth requirements and this is particularly useful in
web-oriented scene generation applications.

References

[1] Anttonen, M., Salminen, A.: Building 3d webgl appli-
cations. Tech. Rep. Report 16, Tamperer University of
Technology, Finland, Department of Software Systems
(2011)

[2] Bailey, M., Cunningham, S.: Graphics Shaders - The-
ory and Practice. CRC Press, second edn. (2012),
iSBN 978-1-56881-434-6

[3] Cantor, D., Jones, B. (eds.): WebGL Beginner’s Guide.
PACKT (2012), iSBN 978-1-84969-172-7

[4] Cozzi, P, Riccio, C. (eds.): OpenGL Insights. CRC
Press (2012), iSBN 978-1-4398-9376-0

[5] Emilien, A., Bernhardt, A., Peytavie, A., Cant, M.P,,
Galin, E.: Procedural generation of villages on ar-
bitrary terrains. Vis. Comput. 28, 809-818 (18 April
2012)

[6] Hearn, D., Baker, M.P.: Computer Graphics with
OpenGL. No. ISBN 0-13-015390-7, Pearson Prentice
Hall, third edition edn. (2004)

[7] Hendrikx, M., Meijer, S., Velden, J.V.D., Iosup, A.:
Procedural content generation for games: A survey.
ACM Trans. on Multimedia Computing, Communica-
tions and Applications 9(1), 1-22 (February 2013)

[8] Huisman, P.: Procedural content generation with use
of a domain-specific language - Nature’s recursive na-
ture and other natural phenomena. Master’s thesis,
Centrum Wiskunde and Informatica, Universiteit van
Amsterdam, Netherlands (15 August 2012)

[9] Ilcik, M., Wimmer, M.: Challenges and ideas in pro-



cedural modeling of interiors. In: Proc. Eurographics
Workshop on Urban Data Modelling and Visualisation.
pp- 29-30 (2013)

[10] Khaled, R., Nelson, M.J., Barr, P.: Design metaphors
for procedural content generation in games. In: Proc.
ACM CHI’13. Paris, France (27 April 2013)

[11] Kim, J., Kim, D., Cho, H.: Procedural modeling of
trees based on convolution sums of divisor functions
for real-time virtual ecosystems. Computer Animation
and Virtual Worlds 24, 237-246 (2013)

[12] Leist, A., Playne, D.P., Hawick, K.A.: Exploiting
Graphical Processing Units for Data-Parallel Scientific
Applications. Concurrency and Computation: Prac-
tice and Experience 21(18), 2400-2437 (25 December
2009), CSTN-065

[13] Longay, S., Runions, A., Boudon, F., Prusinkiewicz,
P.: Treesketch: Interactive procedural modeling of
trees on a tablet. In: Proc. Eurographics Symp. on
Sketch-Based Interfaces and Modeling (2012)

[14] Lopes, R., Hill, K., Jayapalan, L., Bidarra, R.: Mobile
adaptive procedural content generation (2013), delft
University of technology, Netherlands

[15] Mandelbrot, B.B.: The Fractal Geometry of Nature.
W.H. Freeman (1982)

[16] McMullen, T.H., Hawick, K.A.: Webgl for platform
independent graphics. Tech. Rep. CSTN-185, Com-
puter Science, Massey University, Auckland, New
Zealand (October 2012), in 8th IIMS Postgraduate
Conference

[17] McMullen, T.H., Hawick, K.A.: Improving platform
independent graphical performance by compressing
information transfer using json. In: Proc. 12th Int.
Conf. on Semantic Web and Web Services (SWW’13).
p- SWW4052. No. CSTN-174, WorldComp, Las Ve-
gas, USA (22-25 July 2013)

[18] McMullen, T.H., Hawick, K.A., Preez, V.D., Pearce,
B.: Graphics on web platforms for complex systems
modelling and simulation. In: Proc. International Con-
ference on Computer Graphics and Virtual Reality
(CGVR’12). pp. 83-89. WorldComp, Las Vegas, USA
(16-19 July 2012), cSTN-157

[19] Muehl, W., Novak, J.: Game Development Essentials -
Game Simulation Development. Delmar (2008), iSBn
978-1-4180-6439-6

[20] Novak, J.: Game Development Essentials - An Intro-
duction. Delmar, 3rd edn. (2012)

[21] Pirk, S., Stava, O., Kratt, J., Said, M.A.M., Neubert,
B., Mech, R., Benes, B., Deussen, O.: Plastic trees:
interactive self-adapting botanical tree models. ACM
Trans. Graph. 31(4), 50:1-10 (Jul 2012)

[22] Powell, T.A., Schneider, F.: JavaScript: the
complete reference. McGraw-Hill (2012), iSBN
9780071741200

[23] Prusinkiewicz, P., Lindenmayer, A.: The Algorith-

[24]

[25]

[26]

mic Beauty of Plants. No. ISBN 978-0387972978,
Springer (1990)

Saunders, K.D., Novak, J.: Game Development Es-
sentials - Game Interface Design. Delmar, 2nd edn.
(2013), iISBN 978-1-111-64288-4

Vanegas, C.A., Kelly, T., Weber, B., Halatsch, J.,
Aliaga, D.G., Muller, P.: Procedural generation of
parcels in urban modeling. Eurographics 31, 681-690
(2012)

Wright, R.S., Haemel, N., Sellers, G., Lipchak, B.:
OpenGL Superbible. No. ISBN 978-0-321-71261-5,
Pearson, fifth edn. (2011)



