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ABSTRACT
Random number generation continues to be a critical com-
ponent in much of computational science and the tradeoff
between quality and computational performance is a key
issue for many numerical simulations. We review the per-
formance and statistical quality of some well known algo-
rithms for generating pseudo random numbers. Graphical
Processing Units (GPUs) are a powerful platform for accel-
erating computational performance of simulations and ran-
dom numbers can be generated directly within GPU code
or from hosting CPU code. We consider an alternative ap-
proach using high quality and genuinely “random” devi-
ates generated using a Quantum device and we report on
how such a PCI bus device can be linked to a CPU pro-
gram. We discuss computational performance and statisti-
cal quality tradeoffs of this architectural model for Monte
Carlo simulations such as the Ising system.

KEY WORDS
quantum random number generation; GPU; CUDA.

1 Introduction

The fast generation of good quality random numbers [1–6]
is a long-standing challenge [7, 8]. Random numbers
are needed for many applications, but are used in very
large quantities in computer simulations that employ the
Monte-Carlo algorithm [9, 10]. It is neither trivial nor
computationally cheap to generate large sets of pseudo-
random numbers that have the right statistical ”random-
ness” needed to perform an unbiased calculation. Until re-
cently it has not been practical to use random number gen-
eration hardware that was economically priced and suit-
ably unbiased. Instead, pseudo random numbers that were
generated from a suitable deterministic algorithm were em-

Figure 1: Quantis RNG Card for PCI Bus, showing four
independent quantum generator devices.

ployed. A great deal has been written in the literature about
such algorithms, but for the most part there are many very
good ones that are “random enough” and are at least un-
correlated with the application so that they suffice. One
important area of use has been the numerical investigation
of phase transitions and critical phenomena. In such work
the Monte Carlo algorithm is used to sample appropriate
points in a physical model space to simulate the actual dy-
namical behaviour of a model and identify the location of
critical points – abrupt changes - that result when a model
parameter such as temperature changes by a small amount.

This work is very demanding and a certain degree of cau-
tion is perceived in the reported literature as researchers
go to great lengths to be sure their simulations are not
overly biased by random numbers with unfortunate statis-
tical properties.

Pseudo-random number generators are often formulated in
terms of mathematical recurrence relations [11] whereby
repeated application of a transformation will project a
number to another in an apparently random or decorre-
lated sequence - at least to the extend that any patterns
discernible in the resulting sequence are on a scale that is
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irrelevant to the application using them. Any random or
pseudo random number generator delivers a sequence of
random deviates - either floating point uniform deviates or
integers or sometimes just plain bits. An application will
use or consume deviates from such a sequence as it runs.

There are still some philosophically deep questions con-
cerning what it really means for a sequence of deviates to
be truly random. It is widely believed however that some
quantum physical processes yield deviates that are as ran-
dom as we can ever make them. Such devices are presently
available as special purpose cards or external drivers that
connect via a bus-based hardware interface such as PCIe or
USB. We investigate the use of the ID Quantique “Quan-
tis” device below in section 4. Intel and other CPU man-
ufacturers [12] are now actively considering provision of
random number generation hardware directly on the chip.
This closeness to the arithmetic and logic hardware means
that these devices will produce very fast deviates, and the
expectation is that the thermal noise and quantum pro-
cesses involved are sufficiently well understood at a sta-
tistical level to ensure that these sources are also unbiased.

Our paper is structured as follows: In Section 2 we review
some key issues for random number generation. In Sec-
tion 3 we briefly review the Ising model and associated
Monte Carlo analysis algorithms as demanding consumers
of random deviates. In Section 4 we describe some of the
pseudo random number generator algorithms and imple-
mentation strategies we have explored. We present some
performance and statistical test results for both algorithmi-
cally generated and quantum device generated sequences
in Section 5. We discuss some of the implications for fu-
ture generation simulation work and offer some conclu-
sions and ideas for further study in Section 6.

2 Generation Algorithm Issues

Generally speaking there are two main criteria that are con-
sidered when choosing a pseudo-random number genera-
tor. The first is the period of the generated sequence. Ide-
ally this should be so long as to never repeat during the
life-cycle of the application. Modern generators – as we
discuss here – usually have periods that are very long and
that when run on current computer clock speeds have re-
peat times comparable with the lifetime of the known uni-
verse. In this sense the period is not often a direct concern.

A few deviates generated to make a game program be-
haviour “interesting” to a player does not require a gen-
erator with a challengingly long repeat length. However,
Monte Carlo calculations that may take weeks or months of
supercomputer resources must have generators with very
long period lengths. In the last 20-30 years of steadily in-

creasing supercomputer performance, there has been con-
tinued interest in ever longer period generator algorithms.
This often ties in with the need for more bits used in the
generator. The 16-bit integer based generators of the late
1970s, were superceded by 24-bit (floating-point) algo-
rithms such as the Marsaglia lagged-Fibonacci algorithm
[6], by the 64-bit integer based Mersenne-Twistor and in
very recent times by 128-bit algorithms [13] and even
longer for cryptographically strong random number gen-
eration [14].

The second criteria is more subtle however and has defi-
nitely been a known concern with some algorithms. This
issue concerns just how actually random or uncorrelated
the deviates in the sequence are – in the context of the
needs of the driving application. There are some widely
used statistical tests [15] that are now in wide circulation
and which represent the research communities best wis-
dom on what is “random enough.” We discuss these in
section 4.

Applications usually need either random integers with a
flat uniform probability of obtaining all values within a
set range, or uniform floating point deviates in the range
[0, 1), again with a uniform probability distribution across
the range. Generally if one has a generator that produces
either of these, one can construct deviates of more so-
phisticated distributions with suitable transformation algo-
rithms [16, 17].

The apparatus for implementing pseudo-random number
generators usually give rise to raw deviates in one of those
two forms - uniform integers or uniform floating point
number and one can find ways of transforming one to the
other. In the case of floating point deviates one can simply
multiply by N to obtain integers on the [0, N) range, and in
the case of integers known to be in that range, one can di-
vide by N . Different processing hardware will carry these
operations out with different speeds depending on clock
speeds and floating point standards. If one has a random
source of uncorrelated b-bits [18, 19] one can readily ob-
tain (unsigned) integers [20]. in a suitable range of [0, 2b)
or [0, 2b � 1]. One can then divide accordingly to obtain
floating point uniform deviates. The reverse operation is
not so simple however [18]. Most processors use the IEEE
floating point standard bit representation for 32-bit or 64
bit precision. These specify sign bit, exponent and man-
tissa from which it is not trivial to obtain evenly unbiased
random bits without some arithmetic that must necessarily
waste some of the original 32 or 64.

This gives rise to another important criteria for random
number generators - ideally they should be well engineered
in terms of having plug-compatible software programming
interfaces. This means that a code can be tested and imple-
mented using any number of different generator algorithms
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with little code change required. A pragmatic implementer
therefore finds it is often better to have a generator that
produces unbiased integers or raw bits from which an un-
biased unsigned integer can be constructed. It is often then
easier to make a family of suitable software interfaces to
supply all the sorts of deviates that are needed by applica-
tions from the one root algorithm.

In this present paper, we discuss Monte Carlo algorithmic
uses of random numbers where we need a fast supply of
good deviates. Another application is for cryptographic
use, where usually the need for extreme speed is less, but
the need for very high randomness - to the point of un-
crackability is extreme [21].

For some applications it is actually desirable to have
pseudo-random number generator that is repeatable – from
the same starting conditions. Seeding generators is of
course an interesting issue in itself and this problem is of-
ten exacerbated when using a parallel computer. While a
generator algorithm may have a known very long period,
often one has to run the generator many times or on paral-
lel processors and the choice of seeds matters to avoid ac-
cidentally correlating the sub-sequences generated by each
instance [22, 23]. Parallel computing applications such
as parallel and supercomputer implementations of Monte
Carlo simulations have been a target for many special pur-
pose implementations of pseudo random number genera-
tors. Work has been done on: array processors [24]; vector
computer architectures [25]; transputers using parallel Oc-
cam [26]; and more recently on specialist processors such
as the Cell [27] or on Graphics Processing Units(GPUs)
[28–30].

Techniques for generating seeds vary. When debugging an
application it can be very helpful to be able to specify the
same seed and ensure identical results. Once in produc-
tion mode seeds might be generated by an algorithm based
on precise time and dates or from special purpose hard-
ware. Many operating systems will now support a hard-
ware source via for example /dev/random on Unix based
systems. This may supply bits from thermal noise or other
sources. Such deviates are unfortunately not necessarily
statistically unbiased nor necessarily particularly fast - but
they certainly suffice for seeding a proven pseudo random
algorithm that does have the required qualities.

Another approach which has only recently become
economically feasible and which may become more
widespread soon [31], is to have a hardware source of gen-
uinely random numbers - that are drawn from some quan-
tum physical phenomena [32] that is as random as we can
imagine given our current understanding of the universe,
and which therefore do not require a starting seed. Fig-
ure 1 shows a special purpose device, produced by Quan-
tis, that generates around 16MBits/s that are – as we have

Figure 2: A 1024⇥1024 Ising model simulation with tem-
perature T = 2.0 after 1000 simulation steps.

determined and discussed below – of superb quality.

3 Ising Model Applications

Monte Carlo simulations use random sampling to approxi-
mate results when it is infeasible or impossible to compute
the exact result for a physical or mathematical system [33].
The Ising model [34–36] uses such a method to calculate
the critical point of metal alloy phase transitions. The num-
bers in these systems need to be as close to truly random
as possible to avoid bias in the results which may result in
incorrect conclusions

Simulations of the Ising model typically start with a ran-
dom “hot” system. The system is then quenched to a
specific temperature. If this temperature is below a criti-
cal “cold” temperature, then the system undergoes a phase
transition where like spin values begin to clump together,
creating order in the initially random system. The Ising
model has just two possible spin values, “up” and “down”,
but can be extended to the Q-state Potts model [37] that
uses Q spin values. A system quenched to a temperature
very close to the critical temperature shows clusters of like-
like spins on all possible length scales. Figure 2 illustrates
a 2-dimensional Ising model simulation.

A number of different Monte-Carlo update algorithms for
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the Ising model have been proposed over time [38–41].
The Metropolis algorithm [38], which was later gener-
alised by Hastings [42], has formed the basis for Monte-
Carlo statistical mechanics [43, 44] and has been used
widely for Ising model simulations [45–48]. It is a Mar-
cov chain Monte-Carlo (MCMC) method, where the tran-
sitions from one state to the next only depend on the cur-
rent state and not on the past. Using the Metropolis update
algorithm for the Ising model simulation, at each discrete
time step, a new system configuration is chosen at random
by picking a spin to “hit” and flipping its value. If the en-
ergy E of the proposed configuration is lower than or equal
to the current energy, �E  0, then the move to the new
configuration is always accepted. Otherwise, the new con-
figuration is accepted with probability exp(��E/kBT ),
where T is the temperature and kB is the Boltzmann con-
stant. The current configuration is retained if the move is
rejected.

The spins in the Ising model interact with their nearest
neighbours according to an energy function or Hamilto-
nian of the form: H = �

P
hi,ji JijSiSj , where Si = ±1,

i = 1, 2, ...N sites, and Jij is |J | = 1/kBT is the ferro-
magnetic coupling over neighbouring sites i and j on the
network.

The Ising model and other Monte Carlo algorithms can
be used themselves as demanding tests of the quality of
random numbers, based on comparisons with known re-
sults [7].

4 Implementation & Timing

Common methodologies utilise computer CPUs to pro-
duce pseudo-random numbers using bitwise operations
and mathematical operations to suitably randomise a num-
ber. The Mersenne-Twistor [49] is a common generator
algorithm to produce high quality numbers, whereas the
linear congruential algorithm, which is used in Unix rand,
is a common and well known low quality example. Pro-
ducing truly random numbers is impossible when using a
algorithm running on a computer, this is the realm of the
hardware random number generators (RNGs).

The algorithmic tradeoff space covers very high-quality
generator algorithms such as the Mersenne-Twistor that are
significantly slower than those very-fast but lower-quality
algorithms such as linear congruential generators. In be-
tween these extreme cases it is often possible to improve
low-quality generator algorithms by adding lag tables and
shuffle tables to further randomise or decorrelate the se-
quences of random deviates and indeed to combine several
independent algorithmic sources together.

Figure 3: Description of the method for producing a ran-
dom bit in the Quantis device.

4.1 Quantis Random Number Generator

The quantum random number generator we assess in this
paper is the Quantis PCI quantum random number genera-
tor produced by ID QUANTIQUE SA [32]. This generator
uses a photon emitter directed at a semi transparent mirror,
which lets the photons through with a theoretical probabil-
ity of 50% as shown in Figure 3. Each generator allows
for a constant stream of random bits of up to 4 MBits/s.
The PCI device contains 4 separate generators, bringing
the theoretical maximum random stream to 16MBits/s or
⇡ 500 deviates per millisecond.

The Quantis card supports both Windows and various
flavours of Linux. For our testing we used Ubuntu Linux
with the standard Quantis driver installation. The drivers
API facility provides various methods for retrieving dif-
ferent data types. The most low level of these is the
QuantisRead method:
i n t Quan t i sRead ( Quan t i sDev iceType deviceType ,

unsigned i n t deviceNumber ,
void⇤ b u f f e r , s i z e t s i z e ) ;

This generates size bytes of random numbers into
the variable buffer, where size is constrained to
QUANTIS_MAX_READ_SIZE. To get more than this we
must loop until the desired size has been reached. Alter-
nately we can use:
i n t Q u a n t i s R e a d I n t ( Quan t i sDev iceType deviceType ,

unsigned i n t deviceNumber ,
i n t ⇤ v a l u e ) ;

To get a signed integer value from the device. This
method is much slower at reading multiple numbers than
reading raw bytes as we show in section 5. To overcome
this problem, we use QuantisRead in a multi-threaded
environment where one thread is caching blocks of ran-
dom bytes while the consumer thread uses them. This
method may still not be sufficient for algorithms such as
the Monte Carlo, but will significantly reduce the time over
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using QuantisReadInt.

5 Performance & Quality

For most scientific purposes it is sufficient to say that they
need to be sufficiently uncorrelated that when used for a
Monte Carlo simulation or other application the deviate
quality does not lead to an observable bias [50]. Or put
more simply – that the random number generator does not
lead the applications programmer to the wrong answer.
Various statistical tests [8], both at a straightforward level
[51], checking for visual planar correlations [52] planes
and other approaches such as the spacing test, scatter-plots,
that detect obvious patterns or simple statistics are possi-
ble, as well as very specific application related tests that
are highly sensitive to correlations.

To evaluate the raw performance of generators we test
four different popular pseudo-random number genera-
tors: Mersenne Twister (MT), Ran described in the book
Numerical Recipes (Ran) [53], the standard Unix rand
and Marsaglia’s lagged-Fibonacci Generator (LFG). These
generators were tested for randomness using the birthday
spacings test found in the diehard testing suite for ran-
dom numbers, with the values N = 232,M = 212 and
� = 4. This configuration is advised in [54]. Supplemen-
tary tests were also performed with the standard diehard
test suite [55] and these confirm the below findings.

Algorithm Birthday Spacings
Pass/Fail

Ran X
LFG X
MT X

Quantis (to CPU) X
Unix Rand X

Table 1: Results of Birthday Spacings test of different
RNG algorithms. Tick and Cross indicate pass and fail
respectively

Table 1 shows that all except the Unix rand random num-
bers pass the birthday spacings test. This is in line with
common knowledge about the periods of these genera-
tors [1].

Applications of specific random number generators are de-
pendent on the speed in which the numbers can be attained
by the client, where client refers to a central processing
unit, graphics processing unit, etc. In random number in-
tensive applications, such as the Monte Carlo algorithms in
Ising/ Potts models, computation time is negligible com-
pared to the fetch time for random numbers. Whereas,

in cryptography the computation time significantly out-
weighs the fetch time for the random numbers, which al-
lows slow generators to hide their speed by caching num-
bers for fast use by other threads.

To test the speed of the algorithms we generate ten million
uniform floating point numbers and find the number of de-
viates per millisecond on an Intel Core 2 Duo at 2.1 GHz
using the four algorithms that passed the birthday spac-
ing test. The CPU algorithms only utilise one of the cores
available on the CPU. We have also implemented a CUDA
GPU version of the lagged-Fibonacci generator [30] and
report the performance measured on an NVidia GeForce
GTX 580.

Algorithm Performance
Deviates Per Millisecond

Ran 24085
LFG 13367
MT 22795

Quantis (Single Thread) 61
Quantis (Multi Thread) 111

CUDA(LFG) 1.28e107

Table 2: Performance of different RNG algorithms.

Table 2 shows that the results for all of the CPU pseudo-
random number generators are comparable in speed, with
the Ran algorithm producing the most at 24085 deviates
per millisecond. This is more than two orders of magnitude
faster than the single threaded Quantis generator at about
61 32-bit deviates per millisecond. The lagged-Fibonacci
generator on the CUDA GPU is another 2-3 orders of mag-
nitude faster than the CPU algorithms.

6 Discussion & Conclusions

Section 5 shows that all but the Unix rand pseudo-random
algorithms pass the Extended Birthday spacing and Die
Hard tests that we have implemented. These are well
known algorithms and the results are common knowledge
[3], hence it is unsurprising that the widely used Unix rand
failed. This is further proof that this function should not be
used. It has been suggested [3] that lagged-Fibonacci gen-
erators may erroneously fail the Birthday spacings test, but
this does not appear to be the case for our implementation,
which passes the test.

Although these pseudo-random number generators pass
most common and also more stringent tests implemented
in this paper, this does not guarantee their true random-
ness in the face of tests yet to be adviced. Using physi-
cal phenomena, such as photon emitters like the one used
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in this paper or Intel’s on chip temperature variation ran-
dom source, allows us to guarantee that the number is com-
pletely random and free from any bias. Although, the ques-
tion remains how to test these hardware random sources
and can we engineer a test that identifies only a truly ran-
dom number?

Performance of the generators was as expected [30], with
the CUDA GPU LFG algorithm producing 1.28e107 ran-
dom deviates per millisecond. The single threaded Quantis
card algorithm produces only 61 32-bit deviates per mil-
lisecond and 111 deviates for the multi-threaded imple-
mentation. This is much slower than the theoretical maxi-
mum of 500 32-bit deviates from the 16MBits/s stream of
random bits [32]. We attribute this latency to the fetch time
from the card over the PCI bus and the conversion time to
the specified data type. The speed-up attained by introduc-
ing multiple threads is significant as this allows us to hide
the time lost in the conversion process and by fetching the
maximum number of bytes at each API call we minimise
any latency that is associated in calling the Quantis card
via the PCI bus. For Monte Carlo algorithms even the
CPU pseudo random algorithms are the bottleneck in the
simulation, hence the Quantis card is much too slow for
these. A good compromise is to use the numbers produced
by the Quantis card to seed a good pseudo-random num-
ber generator, thus ensuring that the seeds are statistically
independent.

If Intel succeeds in creating a truly random number genera-
tor producing 2.4 billion random bits per second [31], then
this will significantly increase the reasons for using a hard-
ware random source for random heavy algorithms. Until
that point, long period pseudo-random number generators
will continue to be the best choice for Monte Carlo algo-
rithms. However, for low random frequency algorithms
that depend on high quality random numbers, such as gen-
eration of cryptographic keys, current hardware generators
are an excellent choice.

We have found that when used in the correct situation the
Quantis card is an invaluable resource to computer simula-
tions. However, random number generation is very much
an application specific field and we have shown that, when
compared to conventional pseudo-random generators, the
time it takes to produce a single random deviate with the
Quantis card is several orders of magnitude slower. Fur-
thermore, the generation with the Quantis card is inher-
ently serial and does not benefit from parallelisation on ei-
ther the CPU or GPU. However, we have discussed how
this latency may be hidden when the program does not
require random numbers often by using a separate thread
that fetches the numbers from the Quantis device and pre-
pares them for the main process to use as needed. Another
method we have discussed is using the Quantis device

to produce truly random seeds for a high-quality pseudo-
random number generator.

Graphics processing units offer a performance increase of
about 2-3 orders of magnitude over the tested sequential
CPU implementations. They have been shown [56] to be
a powerful accelerator for Monte Carlo simulations that
heavily depend on random numbers. However, develop-
ing high-performance code for GPUs is significantly more
complex and time consuming than it is to write a sequential
or even multi-threaded CPU implementation.

In summary, the field of computer generated random num-
ber algorithms is one of ”horses for courses” - there is no
single best algorithm that will satisfy all requirements. Be-
fore starting any project using Monte Carlo algorithms and
for which the quality of the random numbers matters, it is
therefore of great worth to carefully consider which algo-
rithm to use.
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