
6
Y

6 0

Computational Science Technical Note CSTN-009

Parallel Synchronization Issues in Simulating Artifical Life

H. A. James and C. J. Scogings and K. A. Hawick

2004

Simulating artificial life is a computationally demanding task as quite large systems need to be modelled for long
timescales but over many di↵erent starting conditions to ascertain useful reductionist measurements from a model.
It is therefore valuable to be able to incorporate parallelism to speed up the calculations. However incorporating
concurrency into a model implies a knowledge of the mening of time and synchronisation properties of a model. In
this paper we discuss the implications of local and global synchronisation in models for artificial life. These issues
a↵ect the possible ways that paralleism can be incorporated into our simulation models.

Keywords: artificial life, simulation, parallel computing; synchronisation

BiBTeX reference:

@INPROCEEDINGS{CSTN-009,
author = {H. A. James and C. J. Scogings and K. A. Hawick},
title = {Parallel Synchronization Issues in Simulating Artifical Life},
booktitle = {Proc. 16th IASTED Int. Conf. on Parallel and Distributed Computing

and Systems (PDCS)},
year = {2004},
editor = {Teofilo Gonzalez},
pages = {815-820},
address = {Cambridge, MA, USA},
month = {9-11 November},
publisher = {IASTED},
note = {ISSN 1925-7937; ISBN 0-88986-421-7},
keywords = {artificial life, simulation, parallel computing; synchronisation}

}

This is a early preprint of a Technical Note that may have been published elsewhere. Please cite using the information
provided. Comments or quries to:

Prof Ken Hawick, Computer Science, Massey University, Albany, North Shore 102-904, Auckland, New Zealand.
Complete List available at: http://www.massey.ac.nz/~kahawick/cstn

http://www.massey.ac.nz/~kahawick/cstn
http://www.massey.ac.nz/~kahawick/cstn

PARALLEL SYNCHRONIZATION ISSUES IN SIMULATING ARTIFICIAL
LIFE

H.A. James
Inst of Info & Math Sci

Massey University – Albany
North Shore 102-904
Auckland, New Zealand

email: h.a.james@massey.ac.nz

C.J. Scogings
Inst of Info & Math Sci

Massey University – Albany
North Shore 102-904
Auckland, New Zealand

email: c.scogings@massey.ac.nz

K.A. Hawick
Inst of Info & Math Sci

Massey University – Albany
North Shore 102-904
Auckland, New Zealand

email: k.a.hawick@massey.ac.nz

ABSTRACT
Update methods are an important aspect of the burgeoning
Artificial Life research area. Artificial Life models, like the
Predator-Prey model, are able to operate quite efficiently
when implemented in a sequential manner only while pop-
ulation numbers are low to moderate. We find that for large
populations sequential implementations are too slow to ex-
tract meaningful measurement statistics. In this paper we
discuss the parallelisation of sequential update methods for
use in Artificial Life systems. We also discuss the rami-
fications that parallel update algorithms introduce to data
dependencies and also the meaning of correctness in paral-
lel models.

KEYWORDS
parallel update; concurrency; artificial life; simulation.

1 Introduction

The developing field of Artificial Life (ALife) [1] has seen
a renewed interest in simulating real life with simplified
models [2–5] that researchers are able to control with more
precision. However, these simplified models are showing a
surprising amount of detail and complexity.

Typical implementations of ALife models are serial:
a piece of sequential code is used to create a system and to
serially update all the elements (agents) in the system un-
til a final state has been reached. Unfortunately serial im-
plementations suffer from the problem of becoming over-
whelmed if there is a population explosion: the serial up-
date process becomes slower and slower as the number of
elements to update increases.

This paper describes a simple Predator-Prey model
that we have developed in our on-going process of devel-
oping algorithms to support realistic ALife models. De-
scribed in the next section, our ALife model uses realistic
probabilistic rule matching in a real coordinate space to im-
plement the Predator-Prey system.

The paper’s main contribution is a discussion on the
effect that parallelising the implementation has on the
model itself, and the performance that can be achieved

1In Proc. 16th Int. Conf. on Parallel and Distributed Computing and
Systems (PDCS) 2004. Also Technical Note CSTN-009.

through parallelisation. We discuss the need to state explic-
itly any assumptions that are made during the implementa-
tion of a parallel model. We also consider the ramifications
of incorrectly implemented parallel update algorithms on
the correctness of the resulting code using examples of the
Eden/Epidemic model [6, 7]. This model is easier to anal-
yse, and we demonstrate algorithm “sweep” effects in it as
well as in our own model.

2 A Real-Space Predator-Prey Model

A simple prey-predator model has been constructed and is
under investigation [8]. This type of model contains two
groups of “animals” - the predators and the prey. Animals
of both types move, breed and die after living a maximum
life span. Predators eat prey if they can catch it. Preda-
tors that have not eaten prey within a certain time period
die. Prey do not need to eat as the current simplistic model
assumes sufficient natural resources to sustain life.

The model is executed as a sequence of cycles. Dur-
ing one cycle, the state of every animal is updated and
thus one complete model state is constructed. In a specific
model, the cycle might correspond to a year or a month but
in this theoretical model it is simply referred to as “a time
step”.

The state of an animal is updated by applying rules to
the current state. The current state of an animal is contained
in a number of variables that are used to record information
such as: location, age, hunger, number of prey neighbours,
number of predator neighbours.

There is a different set of rules for each animal type
(in this case, predator and prey). Typical rules include:
predator will move towards prey if hungry; prey will move
away from predator if adjacent; and animal will breed if
adjacent to another animal of the same type.

Each rule has a priority and they are always applied in
priority order, e.g. prey rate “moving away from preda-
tors” higher “than breeding”. Most rules have a condition,
i.e. the rule will only be applied under certain circum-
stances. Thus, for each animal, in each time step the list
of rules is checked in priority order and as soon as a rule
can be applied, it is and no further rules are checked.

There are two ways of updating the state of such mod-
els – simultaneous update or sequential update. Simulta-
neous update lends itself to a parallel implementation
but is difficult and time consuming to implement in a se-
quential program as it requires two states to be maintained
for the model at all times – the “current state” and the “fu-
ture state” where the future state is constructed by applying
rules to the current state. At the end of each time step,
future state becomes the current state and the process is re-
peated.

Our initial model used a sequential update because
it is faster (on a sinple processor system) and requires only
a current state which is constantly changing as the state
of each animal is changed. One possible drawback of this
system is that certain animals are updated prior to other
animals. In order to ensure that this does not consistently
advantage one particular group, the animals are updated in
a random order which is changed at the end of each time
step.

A successful model is one in which a stable environ-
ment can be created enabling many cycles to pass before
the collapse of one, or both, of the predator and prey pop-
ulations. This success is dependent on 5 key parameters:
predator maximum age; predator hunger threshold; preda-
tor birth rate; prey maximum age; and, prey birth rate.

Although each of these parameters is important in its
own right, it is the combination of them that creates a suc-
cessful, or otherwise, model environment. For example, a
high prey birth rate will ensure a rapid increase in the num-
ber of prey animals, but a low predator birth rate will also
increase the number of prey animals – since less predators
means less prey are eaten.

In an attempt to test each of the combinations of the
above parameters for convergence – to test whether the
model enters a stable (or semi-stable) state, the cross prod-
uct of the model’s parameters are being executed across
many different random starting configurations. Early
tests [8] showed that the majority of our simulations in
which the predator birth rate was independent of the prey
birth rate lead to unstable models in which the prey died out
(followed by the predators). Subsequently we have linked
the predator birth rate to the perceived population of prey,
producing many stable models. We have used this adapted
model as a basis for the studies reported in this paper.

3 Concurrent Updates

In each time step of the model, the state of every agent
is updated. There are two basic approaches to updating
the state of such models: sequential update or two-phase
update. Both approaches also require agents to be ordered
and this could be a random order or a fixed order. Thus four
update techniques are derived: sequential ordered update
(also called an in-situ sweep update); sequential random
update; two-phase ordered update; and two-phase random
update.

During a sequential update, every agent is updated in-
situ. This means that if an agent is updated after its neigh-
bour then it is aware of any changes that have occurred in
the states of other agents within the same time step. The
order in which the agents are updated can be random or
fixed (sweep). Iterating through the population in a fixed
order is computationally efficient but introduces some defi-
nite sweeping behaviours that are not necessarily physical
nor “correct” in the sense of being what was intented by the
modeller. When the model uses sequential updates, each
agent requires only a current state which is updated at the
appropriate time and is also viewed by other agents (dur-
ing their updates) before and after it is updated. Thus the
storage requirements for a model with a huge population is
minimised.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900 1000

Pr
ey

 p
op

ul
at

io
n

Time steps

Sequential Ordered
Sequential Random

2-phase Ordered
2-phase Random

Figure 1. Effects on population of different update algo-
rithms when applied to our simple Predator-Prey model
over 1000 time steps.

However, when tested over 1000 time steps, the se-
quential update methods proved to be the most unstable,
in that the number of prey agents rapidly increased with
little sign of the population settling into a long term (sta-
ble) pattern. This is shown in figure 1, which shows that
the two-phase update models are far more stable than the
sequential models and that the two-phase random model is
the most stable followed by the two-phase ordered model.
The sequential ordered update method was less stable than
the sequential random update.

Figure 2 shows the effects when the sequential sweep
algorithm is applied to a single central infected cell with
infection (or growth) probability p = 1.0. The sweep is
a row-major raster. Due to the in-situ updating and the
sweeping effects, the infection is propagated very quickly
to all neighbouring cells that are updated after an infected
cell. This is analogous to information travelling across the
model at the speed of light. When the probability of in-
fection is substantially less than 1, p = 0.25, the skewed
results of the model are more subtle. Figure 3 shows the
‘correct’ result on the left and the skewed results on the

Figure 2. The effects of a sweeping in-situ update algo-
rithm for the Eden Epidemic Model 128 × 128 across suc-
cessive time steps (cells: white empty; dark live; grey dead,
Infection probability 1.0). The simulation starts with a sin-
gle infected cell at the centre and progresses to the right.

right. The correct results have been produced using a two-
phase update algorithm.

Figure 3. Comparing the Generational two-phase update
algorithm (left) with a sweeping in-situ update algorithm
(right) for the Eden Epidemic Model 128×128 across suc-
cessive time steps (cells: white empty; dark live; grey dead.
Infection probability 0.25)

If constrained to a sequential update method a better
way of updating the system is to randomise the choice of
sites to update. This can either be done by randomly shuf-
fling the list of sites to update (perhaps using a pair-wise
shuffle). An even more random approach can be taken by
performing Monte-Carlo hits on the sites: on average all
sites will be updated once every n time steps (where n is
the number of sites in the system), but as the update sites
are being chosen randomly, there is a possibility some sites
will be updated more frequently than others over a short
time period. This has the effect of slightly blurring the con-
cept of ’time’ in the simulation (see figure 4).

Figure 4a) illustrates the cellular growth behaviour of
a variation of the Eden Epidemic model [7] when a sin-
gle infected cell at the centre of the pattern infects nearest
neighbouring cells with probability p = 0.3 at each time
step. In the model shown, infected cells die after two time
steps after being infected. Figure 4b) shows how a ran-
dom algorithm can recover spatial symmetry in the growth
model.

a b

Figure 4. A variation of the Eden Epidemic model is used
to show growth time scales and symmetries on a square lat-
tice. Sites are infected from any live nearest neighbourwith
a probability p = 0.3 (left) or p = 1.0 (right), and once in-
fected, die after two time steps. The cluster is grown from a
single central infected cell. The left hand cluster illustrates
the two phase update algorithm (a) and the right hand (b)
uses a random algorithm whereby cells are essentially up-
dated with mean probability of once per time step. Some
cells are hit more often and although spatial symmetry is
largely recovered, the time scale is accelerated.

Figure 5. The Generational two-phase update algorithm for
the Eden Epidemic Model 128 × 128 cells: white empty;
dark live; grey dead. (Infection probability 1.0). The sim-
ulation starts with a single infected cell at the centre and
progresses to the right.

4 Parallel Issues

A two-phase update simulates updating all agents in par-
allel. Each agent requires two states: a current state and
a future state. In phase 1, each agent uses its own (and
other) current states in order to construct the future state.
Phase 2 occurs at the end of each time step when the newly
constructed future state becomes the current state for each
agent. When p = 1.0 the ordered two-phase algorithm is
expected to produce updates as shown in figure 5. Because
the new system state is generated from a copy of the current
state, skewing effects are not exhibited.

However the two-phase update can lead to even more
subtle anomalies. For example, if two predators are adja-
cent to one prey agent, the correct outcome should be that
one predator eats the prey and the other predator goes hun-
gry. However, in a two-phase update model, both predators
can eat the same prey because each predator recognises that
it is adjacent to prey at the start of phase 1 of the update.
Note that this problem does not arise in a sequential update
model as the predator which is updated first would eat the
prey and the other predator would not have adjacent prey at
the time of its update.

The current solution to these problems with the two-
phase update is to force part of the update to occur sequen-
tially when required. For example, in order to solve the
problem listed above, as soon as a predator eats prey, the
current state of the prey is immediately updated in-situ (i.e.
that prey is removed from the list of viable agents). This
means that within a two-phase updatemodel, part of the up-
date is occurring sequentially and thus an order is required
for that part of the update. Hence it becomes possible to
describe the two-phase random update and the two-phase
ordered update. We stress the need to explicitly state any
assumptions that are made by the architect of such an AL-
ife model system (and hence the update algorithms that will
be applied) especially when rules are introduced to remove
conflicts.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120 140 160

Po
pu

la
tio

n

Time steps

Prey
Pred

Figure 6. Predator and prey populations in our simple
model run for the first 160 time steps.

Figure 6 shows predator and prey populations in our
model when run using a two-phase ordered update. As
expected, the numbers of of predators and prey rise and
fall cyclically. This is due to prey being predated and also
groups of prey breaking away from the predators and hav-
ing the opportunity to reproduce over time. As the model
executes more and more agents are added to the system.
These place an increasing burden on the processor, lead-
ing to an increased time to process each time step. Fig-
ure 7 shows the average time to execute 10 time steps using
different numbers of parallel processors from a single pro-
cessor system to a system using 60 worker processors (the
master process spends most of its time organising updates
and performing communications).

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160

Ti
m

e
fo

r 1
0

tim
es

te
ps

 (s
ec

on
ds

)

Time steps

Sequential
3 Workers
6 Workers

10 Workers
40 Workers
60 Workers

Figure 7. Average time to execute 10 time steps using the
parallel two-phase update algorithm across varying num-
bers of parallel processors.

By taking the average number of time steps completed
per second across varying numbers of processors (figure 8)
we can generate a graph that shows where the ratio of com-
putation to communications becomes smaller. This figure
shows that it is most beneficial to use between 40 and 42
worker processors for ourmodel and that adding processors
after this point does not add any further value.

5 Phase Lag Effects

It is difficult to do any sensible trend analysis on the pop-
ulations of predators and prey without first removing some
of the jitter in the data caused by the model’s randomness.
As previouslymentioned, raw population figures are shown
in figure 6. It can be seen that the populations behave in a
vaguely cyclic manner but not much more information can
usefully be gained from looking at the graph.

We use a low-pass Fourier filter to remove some of
the transient signals from the population results. A Fourier
transform converts the time-based data into frequency-
based data and the low-pass filter removes the higher-
frequency signals. Converting the attenuated frequency-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60

Av
er

ag
e

nu
m

be
r o

f t
im

es
te

ps
 p

er
 s

ec
on

d

Number of parallel processors

Measured speedup
Linear speedup

Figure 8. Average number of time steps per second for
populations in a stable state across varying numbers of par-
allel processors (solid line). The dotted line indicates linear
speedup, which is exhibited by our model up to seven pro-
cessors (six workers).

based data back to time-based data provides us with only
the low-frequency (underlying) data. The graph is shown
in figure 9. It can be seen that a matching set of peaks
and troughs exist in both the predator (top) and prey (bot-
tom) curves. The two matching curves are slightly off-set
in phase, showing the effects of basing the predators’ birth
rate on the current population of prey.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000

P
o
p
u
l
a
t
i
o
n

Simulation Time

"reconstruct-rabbits.dat"
"reconstruct-foxes.dat"

Figure 9. Predator and prey populations after the data has
been passed through a low-pass Fourier filter.

6 Summary and Conclusions

We have discussed the relative ease of implementing a sim-
ple ALife model using a serial execution environment. We
have also discussed the problems with applying a naive
sweeping update algorithm: inconsistencies arise between

the previous state and current state of agents. We find the
models produce far more consistent results when a two-
phase update is used or at the very least the sweep update
is randomised.

Two-phase updates are preferable because they lend
themselves to a greater degree of parallelism than a simple
randomised sweep update. This is because the two-phase
update algorithm maintains a complete copy of the present
state of the system while generating the new state; parallel
processors can compute the new state with complete in-
dependence from other processors, whereas in the sweep
update processors must broadcast their agents’ new state
to all other processors asynchronously. Parallelism is vi-
tally important for our goal of scientifically studying the
characteristics of large populations with varying model pa-
rameters.

The view maintained by the serial model is based on a
list of agents, which means that agents who are neighbours
in the list could be far away from each other in terms of
the model’s geography. In parallelising the model we have
considered different ways in which the model can be split
between processors: geographically and also on a per-agent
basis.

We believe we have identified the major properties of
a suitable parallel algorithm of our ALife model updates.
Having successfully parallelised the simple Predator-Prey
model and shown that the parallel version does converge
to the same results as the serial, we will be measuring the
characteristics of the populations thus generated. We are
also looking to incorporate evolutionary aspects into this
model so that we can allow different agents to evolve dif-
ferent behaviours such as specialisation. We will also be
experimenting with a variation of this model removing the
assumption that prey always have food available.

Exploring these models in a scientifically systematic
manner involves making measurements of many different
runs of large models. Parallelism is therefore crucial to this
programme.

Acknowledgements

The authors gratefully acknowledge the contribution of He-
lix supercomputer time by Massey University and the Al-
lan Wilson Centre in the production of the frameworks and
data reported in this paper.

References

[1] Levy, S. “Artificial Life” Penguin Books, 1992. ISBN
0-14-023105-6

[2] Adami, C. Avida (Digital Life Laboratory) Available
at http://dllab.caltech.edu/avida

[3] Holland, J. ECHO Available from http://-
www.santafe.edu/projects/echo/echo.html

[4] Ray, T. Tierra Available at http://www.isd.adr.co.jp/-
˜ray/tierra

[5] Wilson, S. The Animat Path to AI in From Animals
to Animats 1: Proceedings of The First International
Conference on Simulation of Adaptive Behavior, (pp.
15-21); Meyer, J-A. & Wilson, S. (eds), Cambridge,
MA: The MIT Press/Bradford Books (1991).

[6] Miramontes, O. and Luque, B. “Dynamical small-
world behaviour in an epidemical model of mobile
individuals”, in Physica D, 168-169 (2002), pp 379-
385.

[7] Eden, M. “A two-dimensional growth process.” In
Proceedings of Fourth Berkeley SymposiumonMath-
ematics, Statistics, and Probability, volume 4, str.
223-239. University of California Press, Berkeley,
1960.

[8] James, H.A., Scogings C.J. and Hawick, K.A. “A
framework and simulation engine for studying ar-
tificial life“ in Research Letters in the Informa-
tion and Mathematical Sciences, Vol 6, May 2004,
pp143–155, ISSN 1175-2777. Available from http://-
iims.massey.ac.nz/research/letters/volume6/

